1. 马尔萨斯模型
模型假设: 在独立存在的生物群体中,生物种群数量的变化率是一个保持不变的常数 λ \lambda λ [1]。
问题描述: 不妨令 x x x表示时间,y表示生物种群的数量,生物种群的变化率为 λ \lambda λ。根据马尔萨斯模型中变化率 λ \lambda λ值不变的假设,有,任意给定时间段 Δ x \Delta x Δx,生物种群数量的变化量为, y ( x + Δ x ) − y ( x ) = λ y ( x ) Δ x y(x+\Delta x)-y(x)=\lambda y(x)\Delta x y(x+Δx)−y(x)=λy(x)Δx。且当 x = 0 x=0 x=0时刻, y = y 0 y=y_0 y=y0。试求生物种群的数量 y y y和时间 x x x的函数。
模型求解: 根据假设 y ( x + Δ x ) − y ( x ) = λ y ( x ) Δ x y(x+\Delta x)-y(x)=\lambda y(x)\Delta x y(x+Δx)−y(x)=λy(x)Δx,取 lim Δ x → 0 Δ x \lim_{\Delta x\rightarrow 0} \Delta x limΔx→0Δx,根据牛顿差商法 [4] 得到微分方程,如下,
d y = λ y d x dy=\lambda ydx dy=λydx
根据生物种群的存在性的假设,即 y ≠ 0 y\neq 0 y̸=0,通过分离变量法 [5],如下,
1 y d y = λ d x \frac{1}{y}dy=\lambda dx y1dy=λdx
对微分方程两边进行积分运算 [2],如下,
∫ 1 y d y = ∫ λ d x \int \frac{1}{y}dy = \int \lambda dx ∫y1dy=∫λdx
得到原函数 ∫ 1 y d y = l n y + c 1 \int \frac{1}{y}dy = lny + c_1 ∫y1dy=lny+c1, ∫ λ d x = λ x + c 2 \int \lambda dx = \lambda x + c_2 ∫λdx=λx+c2,其中 c 1 c_1 c1, c 2 c_2 c2为常数 [3],如下,
l n y + c 1 = λ x + c 2 lny + c_1 = \lambda x + c_2 lny+c1=λx+c2
l n y = λ x + c 3 lny = \lambda x+c_3 lny=λx+c3
其中 c 3 = c 2 − c 1 c_3=c_2-c_1 c3=c2−c1为常数。对方程两边取指数运算,如下,
e l n y = e λ x + c 3 e^{lny} = e^{\lambda x+c_3} elny=eλx+c3
y = e λ x ⋅ e c 3 y=e^{\lambda x} \cdot e^{c_3} y=eλx⋅ec3
根据 x = 0 x=0 x=0时刻, y = y 0 y=y_0 y=y0的假设,代入上述方程,如下,
y 0 = e 0 ⋅ e c 3 y_0 = e^0 \cdot e^{c_3} y0=e0⋅ec3
c 3 = l n y 0 c_3 = ln{y_0} c3=lny0
求得微分方程的解,如下,
y = e λ x e l n y 0 y=e^{\lambda x}e^{ln{y_0}} y=eλxelny0
y = y 0 e λ x y={y_0}e^{\lambda x} y=y0eλx
2. 小结和展望
马尔萨斯模型适合短期的种群数量的预测。但是把该模型应用到长期的种群数量预测中,预测结果可能存在较大误差/错误。为了解决模型本身局限性问题,进一步的工作主要是Logistic模型的学习和分析 [6]。计算方法上也可以采用Matlab在微分方程求解方法 [7]。
参考资料
[1] 常数 λ \lambda λ http://episte.math.ntu.edu.tw/applications/ap_population/index.html
[2] 微分方程求解 https://zhuanlan.zhihu.com/p/25514827
[3] 原函数 https://baike.baidu.com/item/原函数/2749968?fr=aladdin
[4] 牛顿差商法 https://zh.wikipedia.org/zh-hk/除法定则
[5] 微分方程之分离变量法 https://zhuanlan.zhihu.com/p/25514827
[6] Logistic模型的学习和分析 https://wenku.baidu.com/view/701fb024aaea998fcc220ecc.html
[7] Matlab在微分方程中的应用 https://www.mathworks.com/help/symbolic/solve-a-single-differential-equation.html