XJTUSE 数学建模自学笔记三:马尔萨斯人口论

数学建模自学笔记3——马尔萨斯人口论



课程内容

马尔萨斯模型
  • 马尔萨斯人口模型是由经济学家托马斯·罗伯特·马尔萨斯于18世纪末提出的一种关于人口增长和资源供给之间关系的理论模型。
  • 在不考虑资源的农耕社会中,资源是充足的,那么可以考虑 r r r作为人口的自然增长率。
  • 差分模型:
    P ( t + Δ t ) − P ( t ) = r P ( t ) Δ t P(t + \Delta t) - P(t) = rP(t) \Delta t P(t+Δt)P(t)=rP(t)Δt
  • 微分模型:
    d P ( t ) d t = r P ( t ) \frac{dP(t)}{dt} = rP(t) dtdP(t)=rP(t) P ( t 0 ) = P 0 P(t_0) = P_0 P(t0)=P0
  • 计算得到:
    P ( t ) = P ⋅ e ( r ⋅ ( t − t 0 ) ) P(t) = P \cdot e^{(r \cdot (t - t_0))} P(t)=Pe(r(tt0))
  • 这里$ P(t) 表示时间 表示时间 表示时间 t 时的人口数量, 时的人口数量, 时的人口数量,P_0 是初始人口数量, 是初始人口数量, 是初始人口数量,r 是人口增长率, 是人口增长率, 是人口增长率,e$ 是自然对数的底数, t t t 是时间。
  • 问题: r r r不一定是常数。
Logistic模型
  • 马尔萨斯模型中 r r r不一定是常数,而可能是一个随人口数量变化的值$ r(t) = r(P(t)) $。
  • 在Logistic模型中,考虑到人口增长和资源供给之间关系,将$ r(t) $ 定义为$ r(1-\frac {P(t)}{K} ) 。其中 。其中 。其中K$表示所研究地区容纳的最大人口。
  • 因此微分模型:
    r ( t ) = r ( P ( t ) ) = r ( 1 − P ( t ) K ) r(t) = r(P(t))= r(1-\frac {P(t)}{K} ) r(t)=r(P(t))=r(1KP(t)) d P ( t ) d t = r P ( t ) \frac{dP(t)}{dt} = rP(t) dtdP(t)=rP(t) P ( t 0 ) = P 0 P(t_0) = P_0 P(t0)=P0
  • 计算得到:
    N ( t ) = K 1 + C e − r ⋅ ( t − t 0 ) N(t) = \frac {K}{1+Ce^{-r \cdot (t - t_0)} } N(t)=1+Cer(tt0)K C = K − P 0 P 0 C = \frac {K-P_0}{P_0} C=P0KP0
  • 这里$ P(t) 表示时间 表示时间 表示时间 t 时的人口数量, 时的人口数量, 时的人口数量,P_0 是初始人口数量, 是初始人口数量, 是初始人口数量,r 是人口增长率, 是人口增长率, 是人口增长率,e$ 是自然对数的底数, t t t 是时间, K K K表示所研究地区容纳的最大人口。
  • 问题:没有考虑年龄分布。
Leslie模型
  • 上述模型中 r r r没有考虑年龄分布,但这确实是一个相对重要的因素。
  • 在Leslie模型中,考虑到年龄分布,定义

N = ( n 0 n 1 ⋮ n n ) N=\begin{pmatrix} n_0 \\ n_1 \\ \vdots \\ n_n \\ \end{pmatrix} N= n0n1nn

  • 因此差分模型:
    n 0 , t + 1 = F 0 ∗ n 0 , t + F 1 ∗ n 1 , t + ⋯ + F s ∗ n s , t n_ {0,t+1} = F_{0}* n_{0,t} + F_{1}* n_{1,t} +\cdots+F_{s}* n_{s,t} n0,t+1=F0n0,t+F1n1,t++Fsns,t n 1 , t + 1 = p 0 ∗ n 0 , t n_ {1,t+1} = p_0 * n_{0,t} n1,t+1=p0n0,t n 2 , t + 1 = p 1 ∗ n 1 , t n_ {2,t+1} = p_1 * n_{1,t} n2,t+1=p1n1,t ⋯ \cdots n s , t + 1 = p s − 1 ∗ n s − 1 , t n_ {s,t+1} = p_{s-1} * n_{s-1,t} ns,t+1=ps1ns1,t

  • 也可以用Leslie矩阵表示:

L = ( F 0 F 1 F 2 ⋯ F s p 0 0 0 ⋯ 0 0 p 1 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 p s − 1 0 ) L=\begin{pmatrix} F_0 & F_1 & F_2 & \cdots & F_s \\ p_0 & 0 & 0 & \cdots & 0 \\ 0 & p_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & p_{s-1} & 0 \\ \end{pmatrix} L= F0p000F10p10F2000ps1Fs000

N t + 1 = L N t N_{t+1} = LN_t Nt+1=LNt

  • 特征值 $ \lambda_0,\lambda_1,\cdots \lambda_s$
  • 特征向量 $ \nu_0,\nu_1,\cdots \nu_s$
  • 结论:

如果 : N 0 = c 0 ν 0 + ∑ i = 1 s c i ν i 如果:N_{0} = c_0 \nu_0 + \sum_{i = 1}^s c_i \nu_i 如果:N0=c0ν0+i=1sciνi

则有 : N t = c 0 ( λ 0 ) t ν 0 + ∑ i = 1 s c i ( λ i ) t ν i 则有:N_{t} = c_0 (\lambda_0)^{t}\nu_0 + \sum_{i = 1}^s c_i (\lambda_i)^{t}\nu_i 则有:Nt=c0(λ0)tν0+i=1sci(λi)tνi

如果 : λ 0 > ∣ λ i ∣ , f o r i = 1 , 2 , ⋯   , s 如果:\lambda_0>|\lambda_i |, for i = 1,2,\cdots,s 如果:λ0>λi,fori=1,2,,s

则有 : lim ⁡ t → ∞ N t ≺ c 0 ( λ 0 ) t ν 0 则有:\lim_{t\rightarrow\infty} N_t \prec c_0 (\lambda_0)^{t}\nu_0 则有:tlimNtc0(λ0)tν0

  • 首特征值的大小和相应的特征向量决定了模型的渐进性质。
学习收获
  • 一个问题可能有多种模型可供选择,而不是唯一的答案。在解决问题时,我们需要考虑问题所处的具体条件,并且没有一种模型比其他模型一定更好。
  • 越复杂的模型需要更多的参数和数据支持。
  • 我们需要根据问题的特定条件和可用的数据来选择适合的模型,并在模型的复杂性和解释能力之间进行权衡。

自己提出的问题

  • 如何更加准确的预测一个地区的人口数量变化。
  • 如何在没有先验知识的时候进行预测。

模型优化

  • 深度学习:可以利用BP神经网络和LSTM等模型,在预测人口时模型不需要任何假设,而是根据已有的数据推算数据内部之间的关系,采取非线性的方法,利用已有数据推算出关系式,然后推算出下一年的人口,然后以下一年的人口为基础继续推算下下一年的人口。
  • 人口分布模型:考虑人口迁移的规模、方向和特征,以了解人口在不同地区之间的流动情况;关注城市化过程中城市人口的增长和农村人口的减少,以及城市扩张和城市规模的变化;考虑区域之间的经济发展差异、政策影响和社会资源分配等因素,以预测未来人口在不同区域的分布变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值