金融风控数据挖掘-Task4

一、学习知识点概要

此次task4主要对金融风控领域的机器学习进行初步地了解,熟悉机器学习的建模过程与调参流程。

二、学习内容

1、相关模型

2、导入建模与调参过程可能需要的库

import pandas as pd
import numpy as np
import warnings
import os
import seaborn as sns
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")

3、声明seaborn样式及使用reduce_mem_usage 函数调整数据类型,减少内存占用

# 声明使用seaborn样式
sns.set()
# 五种绘图风格darkgrid, whitegrid, dark, white, ticks,默认主题darkgrid
sns.set_style('whitegrid')
# 四个预置环境paper,notbook,talk,poster,默认环境notebook
sns.set_context('talk')
# 中文字体设置
plt.rcParams['font.sans-serif']=['SimHei']
# 解决保存图像是符号‘-’显示为方块的问题
plt.rcParams['axes.unicode_minus']=False
# 解决Seaborn中文显示问题并调整字体大小
sns.set(font='SimHei')
# reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间
def reduce_mem_usage(df):
    start_mem = df.memory_usage().sum() 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df

4、读取文件

# 读取数据,划分数据集

data_train =pd.read_csv('train.csv')
data_test_A = pd.read_csv('testA.csv')
data_train = reduce_mem_usage(data_train)
data_test_A = reduce_mem_usage(data_test_A)
X_train=data_train.drop(['id','issueDate','isDefault',], axis=1)
X_test=data_test_A.drop(['id','issueDate'], axis=1)
y_train=data_train['isDefault']
# 5折交叉验证
from sklearn.model_selection import KFold
folds = 5
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)

5、lgb简单建模

# 使用Lightgbm进行建模,分别将train和test放入lgb模型中
# 指定 feature names(特征名称)和 categorical features(分类特征)
# train_data = lgb.Dataset(data, label=label, feature_name=['c1', 'c2', 'c3'], categorical_feature=['c3'])
from sklearn.model_selection import train_test_split
import lightgbm as lgb
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix=lgb.Dataset(X_train_split,label=y_train_split)
valid_matrix=lgb.Dataset(X_val,label=y_val)
# 设置参数
params = {
            'boosting_type': 'gbdt',#boosting类型
            'objective': 'binary',
            'learning_rate': 0.1,#学习率
            'metric': 'auc',#评价标准auc
            'min_child_weight': 1e-3,#最小权值10的负三次方
            'num_leaves': 31,#叶子节点数
            'max_depth': -1,#最大深度
            'reg_lambda': 0,
            'reg_alpha': 0,
            'feature_fraction': 1,
            'bagging_fraction': 1,
            'bagging_freq': 0,
            'seed': 2020,
            'nthread': 8,
            'silent': True,
            'verbose': -1,
}
# 使用训练集进行训练
model=lgb.train(params,train_set=train_matrix,valid_sets=valid_matrix,num_boost_round=20000,verbose_eval=1000,early_stopping_rounds=200)
# 对验证集进行预测
from sklearn import metrics
from sklearn.metrics import roc_auc_score
"""预测并计算roc的相关指标"""
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
fpr, tpr, threshold = metrics.roc_curve(y_val, val_pre_lgb)
roc_auc = metrics.auc(fpr, tpr)
print('未调参前lightgbm单模型在验证集上的AUC:{}'.format(roc_auc))
"""画出roc曲线图"""
plt.figure(figsize=(8, 8))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.4f' % roc_auc)
plt.ylim(0,1)
plt.xlim(0,1)
plt.legend(loc='best')
plt.title('ROC')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
# 画出对角线
plt.plot([0,1],[0,1],'r--')
plt.show()

# 使用k折交叉验证进行模型评估
import lightgbm as lgb
from sklearn.model_selection import KFold 
folds = 5
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)

cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
    print('************************************ {} ************************************'.format(str(i+1)))
    X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]

    train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
    valid_matrix = lgb.Dataset(X_val, label=y_val)

    params = {
                'boosting_type': 'gbdt',
                'objective': 'binary',
                'learning_rate': 0.1,
                'metric': 'auc',

                'min_child_weight': 1e-3,
                'num_leaves': 31,
                'max_depth': -1,
                'reg_lambda': 0,
                'reg_alpha': 0,
                'feature_fraction': 1,
                'bagging_fraction': 1,
                'bagging_freq': 0,
                'seed': 2020,
                'nthread': 8,
                'silent': True,
                'verbose': -1,
    }

    model = lgb.train(params, train_set=train_matrix, num_boost_round=20000, valid_sets=valid_matrix, verbose_eval=1000, early_stopping_rounds=200)
    val_pred = model.predict(X_val, num_iteration=model.best_iteration)

    cv_scores.append(roc_auc_score(y_val, val_pred))
    print(cv_scores)

print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))

6、贝叶斯调参

给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数。主要过程为:定义优化函数(rf_cv)、建立模型、定义待优化的参数、得到优化结果,并返回要优化的分数指标。

from sklearn.model_selection import cross_val_score

"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf, 
              min_child_weight, min_split_gain, reg_lambda, reg_alpha):
    # 建立模型
    model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', metric='auc',
                                   learning_rate=0.1, n_estimators=5000,
                                   num_leaves=int(num_leaves), max_depth=int(max_depth), 
                                   bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
                                   bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
                                   min_child_weight=min_child_weight, min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda, reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )

    val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring='roc_auc').mean()

    return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
    rf_cv_lgb, 
    {
        'num_leaves':(10, 200),
        'max_depth':(3, 20),
        'bagging_fraction':(0.5, 1.0),
        'feature_fraction':(0.5, 1.0),
        'bagging_freq':(0, 100),
        'min_data_in_leaf':(10,100),
        'min_child_weight':(0, 10),
        'min_split_gain':(0.0, 1.0),
        'reg_alpha':(0.0, 10),
        'reg_lambda':(0.0, 10),
    }
)

"""开始优化"""
bayes_lgb.maximize(n_iter=10)  
"""显示优化结果"""
bayes_lgb.max
# 参数优化完成后,我们可以根据优化后的参数建立新的模型,降低学习率并寻找最优模型迭代次数
# 调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数
base_params_lgb = {
                    'boosting_type': 'gbdt',
                    'objective': 'binary',
                    'metric': 'auc',
                    'learning_rate': 0.01,
                    'num_leaves': 14,
                    'max_depth': 19,
                    'min_data_in_leaf': 37,
                    'min_child_weight':1.6,
                    'bagging_fraction': 0.98,
                    'feature_fraction': 0.69,
                    'bagging_freq': 96,
                    'reg_lambda': 9,
                    'reg_alpha': 7,
                    'min_split_gain': 0.4,
                    'nthread': 8,
                    'seed': 2020,
                    'silent': True,
                    'verbose': -1,
}

cv_result_lgb = lgb.cv(
    train_set=train_matrix,
    early_stopping_rounds=1000, 
    num_boost_round=20000,
    nfold=5,
    stratified=True,
    shuffle=True,
    params=base_params_lgb,
    metrics='auc',
    seed=0
)

print('迭代次数{}'.format(len(cv_result_lgb['auc-mean'])))
print('最终模型的AUC为{}'.format(max(cv_result_lgb['auc-mean'])))

7、确定模型参数,建立最终模型

import lightgbm as lgb
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
    print('************************************ {} ************************************'.format(str(i+1)))
    X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
    
    train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
    valid_matrix = lgb.Dataset(X_val, label=y_val)

    params = {
                'boosting_type': 'gbdt',
                'objective': 'binary',
                'metric': 'auc',
                'learning_rate': 0.01,
                'num_leaves': 14,
                'max_depth': 19,
                'min_data_in_leaf': 37,
                'min_child_weight':1.6,
                'bagging_fraction': 0.98,
                'feature_fraction': 0.69,
                'bagging_freq': 96,
                'reg_lambda': 9,
                'reg_alpha': 7,
                'min_split_gain': 0.4,
                'nthread': 8,
                'seed': 2020,
                'silent': True,
    }
    
    model = lgb.train(params, train_set=train_matrix, num_boost_round=14269, valid_sets=valid_matrix, verbose_eval=1000, early_stopping_rounds=200)
    val_pred = model.predict(X_val, num_iteration=model.best_iteration)
    
    cv_scores.append(roc_auc_score(y_val, val_pred))
    print(cv_scores)

print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
...
lgb_scotrainre_list:[0.7329726464187137, 0.7294292852806246, 0.7341505801564857, 0.7328331383185244, 0.7317405262608612]
lgb_score_mean:0.732225235287042
lgb_score_std:0.0015929470575114753
""""""
base_params_lgb = {
                    'boosting_type': 'gbdt',
                    'objective': 'binary',
                    'metric': 'auc',
                    'learning_rate': 0.01,
                    'num_leaves': 14,
                    'max_depth': 19,
                    'min_data_in_leaf': 37,
                    'min_child_weight':1.6,
                    'bagging_fraction': 0.98,
                    'feature_fraction': 0.69,
                    'bagging_freq': 96,
                    'reg_lambda': 9,
                    'reg_alpha': 7,
                    'min_split_gain': 0.4,
                    'nthread': 8,
                    'seed': 2020,
                    'silent': True,
}

"""使用训练集数据进行模型训练"""
final_model_lgb = lgb.train(base_params_lgb, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=13000, verbose_eval=1000, early_stopping_rounds=200)

"""预测并计算roc的相关指标"""
val_pre_lgb = final_model_lgb.predict(X_val)
fpr, tpr, threshold = metrics.roc_curve(y_val, val_pre_lgb)
roc_auc = metrics.auc(fpr, tpr)
print('调参后lightgbm单模型在验证集上的AUC:{}'.format(roc_auc))
"""画出roc曲线图"""
plt.figure(figsize=(8, 8))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.4f' % roc_auc)
plt.ylim(0,1)
plt.xlim(0,1)
plt.legend(loc='best')
plt.title('ROC')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
# 画出对角线
plt.plot([0,1],[0,1],'r--')
plt.show()

8、保存模型

import pickle
pickle.dump(final_model_lgb, open('dataset/model_lgb_best.pkl', 'wb'))

三、学习问题与解答

1、关于lgb

LightGBM (Light Gradient Boosting Machine)是一个实现 GBDT 算法的框架,支持高效率的并行训练。
LightGBM算法总结

2、关于贝叶斯调参

调参是一项繁琐但至关重要的任务,因为它很大程度上影响了算法的性能。而通过设计恰当的概率代理模型和采集函数,贝叶斯优化框架只需经过少数次目标函数评估即可获得理想解,非常适用于求解目标函数表达式未知、非凸、多峰和评估代价高昂的复杂优化问题。
自动化机器学习(AutoML)之自动贝叶斯调参

四、学习思考与总结

基于数据的机器学习是现代智能技术中的重要方法之一,也是人工智能技术的核心,基于数据进行建模与调参是一个相当繁琐的过程,首先我们需要对模型有大致的了解,在了解模型的基础上才能利用好模型,设置模型的参数,这是一个很漫长的过程,由此次task4的学习也发现了机器学习对于数据的重要作用,需要长时间的有效实践才能真正掌握。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值