.random.normal()正态分布
.random.normal(loc=0.0, scale=1.0, size=None)
参数的意义为:
loc:float
概率分布的均值,对应着整个分布的位置
scale:float
概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高
size:int or tuple of ints
参数size(int 或者整数元组):输出的值赋在shape里,默认为None。
DL的流程
给数据——>定一个模型——>训练模型的参数
定模型时先处理参数,要赋初始值,
再者要申请存储梯度所需要的内存 例如:
w.attach_grad()
然后写下所需要的模型 例如:
def net(X, w, b):
return nd.dot(X, w) + b
然后定义损失函数 例如:
def squared_loss(y_hat, y):
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2