深度学习之路的疑惑见解

这篇博客介绍了Python中.random.normal()函数的使用,详细阐述了其参数loc(均值)和scale(标准差)的意义,并探讨了它们如何影响正态分布的形状。同时,文章概述了深度学习的基本流程,包括数据预处理、模型定义、参数初始化、损失函数的设定等关键步骤,帮助读者理解如何在实践中应用这些概念。
摘要由CSDN通过智能技术生成

.random.normal()正态分布

.random.normal(loc=0.0, scale=1.0, size=None)

参数的意义为:

loc:float

概率分布的均值,对应着整个分布的位置

scale:float

概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高

size:int or tuple of ints
参数size(int 或者整数元组):输出的值赋在shape里,默认为None。

DL的流程

给数据——>定一个模型——>训练模型的参数
定模型时先处理参数,要赋初始值,
再者要申请存储梯度所需要的内存 例如:
w.attach_grad()
然后写下所需要的模型 例如:

def net(X, w, b):  
   return nd.dot(X, w) + b 

然后定义损失函数 例如:

def squared_loss(y_hat, y): 
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值