题目链接:
[UVA 11853]Paintball[DFS]
题意分析:
在一个1000*1000的方块场地中,你需要从最左边开始一路避开敌人的攻击到达最右边。敌人有自己的坐标以及攻击范围,也就是一个圆形范围内你都不能碰到,问你能到达最右边吗?能的话输出左边进入的最大坐标(0,Ymax), 右边出去的最大坐标(1000,Ymax)。
解题思路:
什么情况下不能到达目标呢?只有这种情况,也就是相邻的圆连接起来隔断了整个地图,否则都是可以到达的。这样的话,一个dfs直接判断就行了。剩下的是坐标怎么找到,首先默认最大坐标为(0,1000)和(1000,1000),什么时候不能从这个点出发呢?以最左边的进入点为例:如下图
此时,最高点,只能是红色点。可以发现,仅有这种从入点到其最上方都被挡住的情况,才会使得进入点下移。这样我们在dfs判断是否被隔断的时候,就可以顺手判断最高点位置了。
个人感受:
嘛,好好写也不是太难啊这题。不过CE了好多发,说我定义的变量y1 y2被定义成了其它东西,最后只能改成ans1、ans2。也不知道为啥。
具体代码如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int INF = 0x7f7f7f7f, MAXN = 1111;
double ans1, ans2; //左边最大y值,右边最大y值
bool flag, vis[MAXN];
struct Circle{
double x, y, r;
void read()
{
scanf("%lf%lf%lf", &x, &y, &r);
}
}circle[MAXN];
vector<int> G[MAXN];
double DIS(int a, int b) //圆心间距离
{
double dx = circle[a].x - circle[b].x;
double dy = circle[a].y - circle[b].y;
return sqrt(dx * dx + dy * dy);
}
void dfs(int u)
{
if (flag || vis[u]) return;
vis[u] = 1;
if (circle[u].y <= circle[u].r) //和下边界相交,无法到达
{
flag = 1; return;
}
//如果和最左边或者最右边相交,则更新
if (circle[u].x <= circle[u].r) ans1 = min(ans1, circle[u].y - sqrt(circle[u].r*circle[u].r - circle[u].x*circle[u].x));
if (circle[u].x + circle[u].r >= 1000) ans2 = min(ans2, circle[u].y - sqrt(circle[u].r*circle[u].r - (1000 - circle[u].x)*(1000 - circle[u].x)));
for (int i = 0; i < G[u].size(); ++i)
{
dfs(G[u][i]);
}
}
int main()
{
int n;
while (~scanf("%d", &n))
{
ans1 = ans2 = 1000.0;
for (int i = 0; i < n; ++i)
{
circle[i].read();
G[i].clear();
}
for (int i = 0; i < n; ++i) //预处理出圆与圆间的连接关系,方便dfs访问
{
for (int j = i + 1; j < n; ++j)
{
if (DIS(i, j) <= circle[i].r + circle[j].r)
{
G[i].push_back(j);
G[j].push_back(i);
}
}
}
flag = 0;
memset(vis, 0, sizeof vis);
for (int i = 0; i < n; ++i)
{
if (circle[i].r + circle[i].y >= 1000)
dfs(i);
}
if (flag) printf("IMPOSSIBLE\n");
else printf("%.2f %.2f %.2f %.2f\n", 0.0, ans1, 1000.0, ans2);
}
return 0;
}