下一代工业4.0承诺增加制造业的灵活性,伴随着大规模定制、更好的质量和提高生产率。因此,它使公司能够应对生产越来越个性化的产品的挑战,以较短的交付时间和更高的质量。智能制造在工业4.0中占有重要地位。典型的资源被转换为智能对象,以便它们能够在智能环境中感知、行动和行为。为了全面理解工业4.0背景下的智能制造,本文对智能制造、物联网(IoT)制造和云制造等相关主题进行了全面综述。根据我们的分析,突出了这些主题的相似性和差异性。我们还回顾了用于实现智能制造的关键技术,如物联网、信息物理系统(cps)、云计算、大数据分析(BDA)和信息通信技术(ICT)。
智能制造的发展
智能制造是一个广泛的制造概念,其目的是充分利用先进的信息和制造技术,优化生产和产品交易。它是一种基于智能科技的新型制造模式,极大地提升了典型产品全生命周期的设计、生产、管理和集成。通过使用各种智能传感器、自适应决策模型、先进材料、智能设备和数据分析,可以促进整个产品生命周期。提高生产效率、产品质量和服务水平。制造企业面对全球市场的动态和波动的能力可以增强其竞争力。
这一概念的一种实现形式是智能制造系统(IMS),它被认为是通过采用新模型、新形式和新方法将传统制造系统转化为智能系统而获得的下一代制造系统。在工业4.0时代,IMS通过Internet使用面向服务的体系结构(SOA)向最终用户提供协作的、可定制的、灵活的和可重构的服务,从而实现高度集成的人机制造系统。这种人机合作的高度集成旨在建立IMS中涉及的各种制造要素的生态系统,从而使组织、管理和技术层面能够无缝结合。IMS的一个例子是Festo Didactic cyber-physical factory,作为德国政府的平台工业4.0战略计划的一部分,它向大型供应商、大学和学校提供技术培训和资格认证
AI通过提供学习、推理和行动等典型特征,在IMS中扮演着重要的角色。通过使用AI技术,可以将人工参与IMS的程度降至最低。例如,材料和生产成分可以自动排列,生产过程和制造操作可以实时监控和控制。随着工业4.0不断获得识别,自主感知、智能互联、智能学习分析、智能决策最终将实现。例如,智能调度系统可以基于人工智能技术和问题解决方案来调度作业,并可以在互联网平台上作为服务提供给其他用户
IoT制造是指将典型的生产资源转化为能够感知、互联、交互的智能制造对象(SMOs),自动、自适应地执行制造逻辑的先进原理。在物联网制造环境中,实现了人对人、人对机器和机器对机器的连接,用于智能感知。因此,通过物联网技术在制造业的应用,可以实现资源的按需使用和高效共享。物联网被认为是工业4.0下的现代制造理念,并采纳了最新的进展,例如用于数据获取和共享的尖端信息技术(IT)基础设施,极大地影响了制造系统的性能。
物联网制造实现了机器、工人、材料、岗位等各种制造资源的实时数据收集和共享。实时数据采集和共享基于射频识别(RFID)和无线通信标准等关键技术。通过使用RFID技术,材料的移动等实体制造流程和各种制造操作的可见性和可追溯性等相关信息流可以无缝集成。RFID标签和读取器被部署到典型的制造现场,如车间、装配线和仓库,在这些地方,通过给制造对象配备RFID设备来创建智能对象。这允许检测车间干扰并实时反馈到制造系统[21],从而提高制造和生产决策的有效性和效率。已经报道了几个现实生活中的物联网制造案例。为了提高生产灵活性,本文引入了一种基于rfid技术的摩托车装配线实时生产管理系统。该生产系统用于隆鑫电机有限公司,实时采集原材料、在制品、员工的生产数据,提高了感兴趣项目的可视性、可追溯性和可追溯性。汽车零部件生产企业怀济登云汽车零部件(控股)有限公司的案例研究提供了另一个例子。这家SME发动机阀门制造商在整个运营过程中使用了一种支持rfid的车间制造解决方案。基于rfid实时数据,对制造执行系统和企业资源规划系统进行了集成扩展。广东志高空调有限公司实施基于rfid实时车间物料管理的案例。在这种情况下,RFID技术提供了自动和准确的对象数据,使对象实时可见和可跟踪。更多的案例可从模具行业、汽车零部件制造联盟、产品生命周期管理和航空航天维修操作。
智能制造SM vs IM
在英语中,Smart/Intelligent都可以被翻译为聪明的,智慧的。因此智能制造这个词其实对应着英语两个版本,但是随着研究的深入,这两者由于概念相近,混淆的学者越来越多。最终一篇区分SM与IM的论文横空出世,很好地说明了在中文中的智能制造对应的两个单词IM与SM(I/S + Manufacturing)
过去几年中对SM的定义出现了很多种方式,分别有:
- 从工程角度来看,SM是先进智能/智能技术的应用,使新产品的快速稳定制造、对个性化产品需求的动态响应以及生产和供应链网络的实时优化。SM平台可以整合设计、产品、运营和横跨车间、中心、工厂、企业和整个供应链的业务系统。
- 从网络角度来看,SM是CPS、物联网和工业物联网(IIoT)的应用,通过传感器和通信技术在制造的所有级别和阶段捕获数据。随着时间的推移,随着生产率的提高和错误和生产浪费的减少,SM变得越来越聪明。
- SM从决策视角出发,利用领域数据的可访问性和普遍性,帮助制造企业更好地预测和维护生产过程和系统,从而提高生产效率。基于大数据分析(BDA), SM优化生产运营控制流程,包括进度计划、诊断、供应预测和评估。
IM:
- 从取代人类智能的角度来看,IM自动化执行制造功能,就像熟练的人类在做这项任务一样。IM系统利用人工智能技术
最大限度地减少了人工对生产活动和系统的干预
。换言之仍然不是全自动,需要有人参与 - 从系统集成的角度来看,IM将具有不同程度机器智能的制造过程和系统组合在一起,包括人工智能支持系统、人工智能集成系统和完全的ims
- 从智能科学的观点来看,IM的目标是通过整合先进的信息技术、计算能力和AI,在本地或全球建立自适应的制造操作和系统。从数据驱动智能的角度来看,IM依赖于对来自人类、机器和车间、工厂以及整个产品生命周期的实时数据的及时获取、分发、分析和利用。
- 从人-信息-物理系统(HCPS)的观点, IM是一个优化集成了人、物理和网络系统的复合系统,这些系统协同实现设定的制造目标。IM是在不同系统层次的制造中设计、构建和应用HCPS的组织原则。先进的信息技术使IM从数字化制造发展到网络化制造,并朝着下一代发展。
SM/IM的功能和原理
学者们提出了SM的几个特征、能力和原则,但NIST将其关键能力总结为敏捷性、质量、生产力和可持续性
敏捷性可以被定义为在竞争和动态变化的环境中通过有效反应而生存和繁荣的能力,由客户设计的产品和服务驱动。使能技术对敏捷性的成功至关重要,包括建模和仿真、供应链集成和分布式智能。
质量反映出成品符合设计规格的程度。在SM的背景下,质量还意味着产品创新和定制的措施。
传统上,生产率被定义为生产过程中产出与投入的比率,利用制造时间、成本、劳动力、材料和能源效率。对于SM来说,生产力度量还包括对客户需求的响应,以便更好地显示定制化的重要性
可持续性被定义为制造业对环境、社会和员工福利的影响,以及其经济可行性。与时间和成本等传统生产力驱动因素相比,可持续性已变得更加重要。然而,可持续性测量还不成熟,是一个活跃的研究领域
对于IM系统,则有:
适应性是最重要的特征之一,是在不牺牲目标的情况下适应动态环境的能力。
自动化维护是一种识别错误/故障并采取纠正措施的能力,无需人工干预。IM系统可以是可重新配置的。
学习和自我进步是IM系统的一个重要特征,是基于不断更新的知识库来改进系统的能力。这也可以通过对现有知识进行实验并评估其性能来触发。
自主性是一种独立性,没有这种独立性,智能能力就会受到限制。
通信允许子系统或组件通过生成报告、指示命令和启动活动进行合作。
预测能力是预测变化及其对系统性能影响的能力。.目标寻求是根据系统的任务和当前状态创建、细化和更新目标的能力。
创造性是对IM系统将创造新的理论、原则、预测等的期望。这种能力需要与系统组件交互,以及高度的自治。这是目前的理论阶段的发展方向。
在SM和IM的发展过程中出现了许多制造范式,包括CIM、数字制造、云制造、网络化制造、网络物理生产和社会化制造。一般来说,它们范式是相似的,共同的目标是更智能/智能决策和制造资源的最佳利用,但也显示出多样性和差异。每种范式的研究重点都基于其思想和实现技术。例如,数字制造使用计算机来提高制造性能和降低成本,而云制造使用去中心化和网络化制造以及面向服务的架构(soa)。网络物理生产系统在工业4.0中扮演着核心角色。当特定地区或特定时期的制造业升级时,所有范式都发挥了作用。
这些范例与SM和IM共享一个或多个共同的原则,为现代SM和IM的建立做出了贡献。除了先进制造业之外,与SM相关的四个最常见的范式是网络物理生产系统、云制造、数字制造和可持续制造。相比之下,与IM相关的四种最常见的范式是灵活制造、整体制造、CIM和敏捷制造。虽然SM和IM可能有不同的优先事项,但它们都同意利用各自时代的最佳技术,对制造的规模、成本、质量、服务和智能或智能进行转型和升级。特别是,计算机建模、监控和信息/数据分析在这些范例中被广泛应用。