n个玩具 m个区间
每个玩具有一个beauty值 问任选三个区间 三区间的MINleft~MAXright的和的期望值
预处理一个数组 存放每个位置被几个区间囊括 这样该位置被选择的概率为c(x,3)/c(m,3)
若beauty数组为w 预处理数组a
期望值即为 w[i]*c(a[i],3)/c(m,3) i∈[1,n]
注意防止乘法爆long long
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
using namespace std;
int w[50001];
int ad[50002];
ll C(ll n)//c(n,3)
{
if(n < 3) return 0;
ll ans = 1;
for(int i = 2; i >= 0; --i)//防爆long long
ans = ans*(n-i)/(3-i);
return ans;
}
ll gcd(ll a,ll b)//约分
{
ll tmp;
while(b)
{
tmp = b;
b = a%b;
a = tmp;
}
return a;
}
int main()
{
int t,n,m,i,l,r;
ll fz,fm,gd,lst;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&m);
for(i = 1; i <= n; ++i)
scanf("%d",&w[i]);
memset(ad,0,sizeof(ad));
for(i = 0; i < m; ++i)
{
scanf("%d %d",&l,&r);
ad[l]++;
ad[r+1]--;
}
if(m < 3)//不这样做会越界。。血的教训
{
puts("0");
continue;
}
fm = C(m);
fz = lst = 0;
for(i = 1; i <= n; ++i)//预处理被选次数顺带把期望求了。。
{
lst += ad[i];
fz += w[i]*C(lst);
}
gd = gcd(fz,fm);
fz /= gd;
fm /= gd;
if(fm == 1) printf("%I64d\n",fz);
else printf("%I64d/%I64d\n",fz,fm);
}
return 0;
}