【LightOJ 1027】A Dangerous Maze(期望)
题目大意: 一个迷宫中有n扇门,每扇门都有传送耗时v。
v为正数,从该门可传送出去,花费v时间
v为负数,从该门传送仍会回到该处,花费-v时间
已知选择每扇门概率一样,每次传送后不会记得上次的选择,即没有后效性。
问传送出去所需时间的期望。
设选择的门传送出去的概率为
P1
传送不出去的概率为
P2
当前选择能传送出去情况下的平均时间为
T1
传不出去的平均时间为
T2
期望
V=P1T1+P2(T2+V)
化简得
V=P1T1+P2T21−P2
进一步化简,可得 V=s1+s2x s1为正数的和s2为负数的绝对值的和x为正数个数
这样统计一下就行了
代码如下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <climits>
#include <ctime>
#include <cstring>
#include <queue>
#include <stack>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define Pr pair<int,int>
#define fread(ch) freopen(ch,"r",stdin)
#define fwrite(ch) freopen(ch,"w",stdout)
using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const int mod = 1e9+7;
const double eps = 1e-8;
int main()
{
int t,a,b,x,n;
scanf("%d",&t);
for(int z = 1; z <= t; ++z)
{
scanf("%d",&n);
a = b = 0;
while(n--)
{
scanf("%d",&x);
if(x > 0) b++;
a += abs(x);
}
printf("Case %d: ",z);
if(b) printf("%d/%d\n",a/__gcd(a,b),b/__gcd(a,b));
else puts("inf");
}
return 0;
}