原子物理中的组合常数 与astropy包中的科学数据

  • 基本物理常数
    • 电子电量
      • e=1.602\times 10^{-19}C
    • 电子静止质量
      • m_e = 9.109\times 10^{-31}kg
    • 电子静止能量
      • E=0.511\times 10^6eV
    • 真空介电常数
      • \varepsilon _0 = 8.85\times10^{-12}F/m
    • 普朗克常数
      • h = 6.626\times10^{-34}J\cdot s
    • 约化普朗克常数
      • \hbar{}=h/2\pi
    • 光速
      • c = 299792458m/s
    • 精细结构常数
      • \alpha = \frac{e^2}{4\pi \varepsilon_0\hbar{}c}\approx \frac{1}{137.036}
    • 里德伯常数
      • R=\frac{m_e\cdot e^4}{8\varepsilon _0^2ch^3}
      •  真空中光速2.99792458\times 10^{8}m/s
        基本电荷e=1.602176\times 10^{-19}C

        普朗克常数

        h=6.62606876\times 10^{-34}J\cdot s
        玻尔兹曼常数k = 1.38065\times10^{-23}J/K
        阿伏伽德罗常数N_{A}=6.02214199\times10^{23}/mol
        真空介电常数\varepsilon _{0}=8.8542\times10^{-12}V\cdot m
        真空磁导率u_0=4\pi \times 10^{-7}A\cdot m

        电子静质量

        m_e=9.10938188\times10^{-31}kg
        中子静质量m_n=1.674927\times10^{-27}kg
        质子静质量m_p=1.67262\times10^{-27}
        核磁子\beta =\frac{u_0he}{4\pi m_p}=5.050786\times10^{-27}J/T
        玻尔半径0.529177\times10^{-10}m
        里德伯常数R_\infty =1.0973731568\times10^7/m
        精细结构常数\alpha =7.29735\times10^{-3}
        原子质量单位1u=1.6605387\times10^{-27}kg
        电子伏特1eV=6.02\times10^{-19}J
        玻尔磁子u_B=\frac{u_0he}{4\pi m_e}=9.274\times10^{-24}J/T
  • 组合常数
    • e^2/4\pi\varepsilon _0=1.44fm\cdot MeV
    • \hbar c=197fm\cdot MeV
    • 组合常数的应用
      • 对葡萄干模型大角度散射可能性的估算
      •  氢原子结构及运动的特征量
        •  
      • 不确定关系在宏观表现上的估算
      • 原子内部的磁场
      • 在卢瑟福散射公式中的应用
      • 原子光谱

astropy.units

  • 我们只需要一个help()命令即可
from astropy import units as u
help(u)
  • 会有大量的信息
  • 几个例子
    F = Unit("F")
        Farad: electrical capacitance
    G = Unit("G")
        Gauss: CGS unit for magnetic field
    H = Unit("H")
        Henry: inductance

astropy.constans

  • 类似的
from astropy import constants as cons
                                                                          
cons.G
                                                                          
<<class 'astropy.constants.codata2018.CODATA2018'> name='Gravitational constant' value=6.6743e-11 uncertainty=1.5e-15 unit='m3 / (kg s2)' reference='CODATA 2018'>
cons.e
                                                                          
<<class 'astropy.constants.codata2018.EMCODATA2018'> name='Electron charge' value=1.602176634e-19 uncertainty=0.0 unit='C' reference='CODATA 2018'>
cons.u
                                                                          
<<class 'astropy.constants.codata2018.CODATA2018'> name='Atomic mass' value=1.6605390666e-27 uncertainty=5e-37 unit='kg' reference='CODATA 2018'>
cons.ub

计算

decompose 方法

  • e.g. 1
x1 = 1*u.cm
                                                                          
x2 = 2*u.m

x3 = x1/x2
                                                                          
x3.decompose()

>>><Quantity 0.005>
  • e.g. 2
x4 = 0.5*u.s
                                                                          
x5 = x1/x4
                                                                          
x5.decompose()
                                                                          
>>><Quantity 0.02 m / s>

to方法

>>> x5.decompose()
...                                                                           
<Quantity 0.02 m / s>
>>> x5.to(u.cm/u.s)
...                                                                           
<Quantity 2. cm / s>
>>> 

属性

>>> x5.value
...                                                                           
2.0
>>> x5.unit
Unit("cm / s")

原子物理中的各物理量粗略的数量级

  • 原子核密度 10^{14}kg/m^3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值