等距螺线(阿基米德螺线,等速螺线)
- 等距螺线是一种特殊的曲线形状,具有一些有趣的性质和应用。
- 极坐标表达:等距螺线可以用极坐标表达:等距螺线的参数方程为 r(θ) = a + bθ
- 几何性质:等距螺线呈现出逐渐扩大或逐渐收缩的螺旋形状。
- 它们在数学上是无限延伸的曲线,但通常只绘制一部分。等距螺线具有平坦的曲率
- 应用领域:等距螺线在工程和科学领域中有广泛应用。
- 设计螺旋桨和螺旋翼,以实现最佳的气动性能
- 描述行星和彗星的轨道
import matplotlib.pyplot as plt
import numpy as np
def Equidistant_spiral(a, b, num_points=5000, n=5):
theta = np.linspace(0, 2 * np.pi * n, num_points)
r = a + b * theta
x = r * np.cos(theta)
y = r * np.sin(theta)
plt.plot(x, y)
plt.axis("equal")
plt.title("Equidistant Spiral")
plt.pause(0.01)
a = 1
b = 5
num_points = 1000
Equidistant_spiral(a, b, num_points)
a = 1 b = 5
a = 1 b = -5
a = 1 b = -0.05
a = 1 b = -0.005
费马螺线
- 费马螺线
- 极坐标表达:费马螺线也可以用极坐标表达。其参数方程为 r(θ) = a * θ^0.5,其中 r 是距离中心点的距离,θ 是极角,a 是常数。费马螺线的极径与极角之间的关系是反余弦函数,这使得螺线上的每个点到中心点的距离与极角之间存在特定的关系。
- 几何性质:费马螺线呈现出逐渐收敛的螺旋形状。与等距螺线不同,费马螺线的曲率是变化的,从而产生了类似于金螺旋线的形态。
- 应用领域:费马螺线在工程和科学领域中也有广泛应用。
- 光学设计中,费马螺线被用于设计透镜表面,以实现特定的光学效果。
- 地理学中用于描述地球表面上的估计等高线。
等角螺线
- 等角螺线
- 极坐标表达:等角螺线可以用极坐标表达。其参数方程为 r(θ) = a * exp(bθ)
- 几何性质:等角螺线呈现出逐渐扩大或逐渐收缩的螺旋形状,类似于费马螺线
- 应用领域:
- 机械设计中,等角螺线可以用于设计螺纹连接、齿轮传动等,以实现最佳的机械性能。
- 地理学和地质学中,等角螺线可以用于描述地壳变形和地震活动等现象。
a = 1 b = -1
a = 1 b = 1
- 注意看坐标
a = 1 b = -10
a = 1 b = 0.1
欧拉螺线
- 详见代码
L=2
L=20