群的基本概念和基本性质
集合与运算
集合的直乘
-
设 A = { a 1 , a 2 ,…, a i , … } B = { b 1 , b 2 ,…, b j , … } , 则集合 C=A × B= {( a i ,b j ) | a i ∈ A , b j ∈ B } 是 A 与 B 的直乘
映射
- 满射(Surjective):一个函数或映射是满射的,如果对于该函数的定义域中的每个元素,在该函数的值域中都存在至少一个元素与之对应。换句话说,函数的值域等于或大于其定义域
- 单射(Injective):一个函数或映射是单射的,如果不同的定义域元素在函数的作用下有不同的值域元素。换句话说,对于不同的输入值,函数的输出值也不相同。
- 一一映射(Bijective):一个函数或映射是一一映射的,如果它既是满射又是单射,即每个定义域元素都与唯一一个值域元素对应。换句话说,每个输入值都有唯一的输出值,并且每个输出值都有唯一的输入值。
- 逆映射(Inverse mapping):给定一个一一映射的函数,它与原始函数的作用相反,将值域映射回定义域。逆映射可以将函数的输出值还原为输入值。
- 恒等映射(Identity mapping):对于某个集合或空间,恒等映射是指将元素映射到自身的映射。对于任何元素,恒等映射的输出值等于输入值。
二元运算
-
若对 A 上的每一对 有序元( a, b ) ,在 A 上有唯一确定的c 与之对应,即有一规则 R 使得 A×A → A ,则 R 称为 A 上的一个二元运算
同态与同构
- 设 A 和 B 是两个不同集合,其中分别定义了乘法 · 和 *。若有满射f 使得 f (xi · xj) = f(xi) * f(xj)
- 像的乘积等于乘积的像
- 则称 f 为 A 到 B 的同态
- 若一同态映射为一一映射则可称为同构
群的定义和基本性质
-
G 是一个集合,其中定义了乘法。如果对 于所定义的乘法,以下四个条件成立,则集合 G称为群
-
闭合
-
结合 gi(gj gk) = (gi gj)gk
-
存在单位元
-
存在逆元
-
常用概念
- 阿贝尔群:可交换群
- 有限群
- 无限群
- 群的阶:群中元素个数
- 群元素的阶
- 一个群中的元素所生成的子群的元素数量。换句话说,一个群元素的阶是它连续自乘多少次后得到群的单位元素
- e.g.
- G = (Z, +),对于元素 3
- 无论如何也不能加到0,因此3的阶为无穷大
- G = (Z, +),对于元素 3
- 生成元:通过乘法产生群的最小子集
- 循环群:一个生成元
基本性质
- (gi ^{-1}) ^{-1} = gi;(gi gj) ^{-1}= gj^{-1} gi^{-1}
- 单位元唯一
- 逆元素唯一
- 若群 G 与 G' 同态或者同构 那么
- 群G 的单位元的象是 群G'的单位元
- 对于G 中的元素 g,设 g 的象是 g',
- g的逆元g^{-1} 的象是 g'^{-1}
-
有限群重排定理
-
设 G是个 N阶群则 G 的每个元素在群表的每 一行以及每一列中出现且只出现一次。
-
e.g.
-
群表
乘法 1 2 3 4 1 1 2 3 4 2 2 1 4 3 3 3 4 1 2 4 4 3 2 1
-
-
子群及其陪集
子群
-
设 H为 G的一个子集,若它对 G的乘法构成群,则称H 为 G 的 子群
陪集
-
设 H = { e, h 2, …, h m } 是 G 的一个子群,对于某个元素x ∈ G, 集合 xH = { x,xh2,...,xhm} 称为 H 的 一 个左陪集
-
任意两个左陪集xH和 yH,要么完全相同,要么完全不同 。
拉格朗日定理
- 设H是G的一个子群,则G的阶 |G|一定是H的阶|H的整数倍,即|G|=k |H|。其中k是正整数,称为H在G中的指数,实际上也就是G中含H的陪集数。
- 若群G的阶为素数时,G没有真子群,而且G必为循环群。
群的共轭元素类
共轭关系
- 设g是G的一个元素,任意h \in G,元素g'= hgh^{-1}称为g 的共辄元素,而g和g'具有共辄关系。(相似变换)
共轭类
-
G 中所有相互共轭的元素构成的集合,称为共轭类
-
同类元素有相同的阶
-
两个类不能有公共元素
-
阿贝尔群的所有元素各成一类
-
单位元自成一类
- 矩阵群:共轭关系对于矩阵是相似变换,而矩阵的相似变换不改变矩阵的迹
- 迹相同的矩阵属于同一个类
- 群 G 中任何一个类Ci 满足:任意 x \in G,x Ci x^{-1} = Ci
逆类
-
若 C i = { g 1 , g 2 , …, g m } 是群 G 的一个共轭类, 集 合 C i ' = { g 1^{-1} , g 2^{-1} , …, g m^{ -1} } 也是 G 的一个共轭类,称为 C i 的逆类
-
可以把群分解为不相交的共轭类的并集
几个定理
- 若Λ 是群中若干个完整的类构成的集合:Λ = C1 + C2 + … x是群中任意元素,则有xΛ x^{-1} =Λ 成立
- 逆定理:任何一个满足关系xΛ x^{-1} = Λ, 任意 x ∈ G 成立的集合Λ必然由若干个完整的类构成
- 类元素数目定理:对于有限群G,每一个共轭类Ci的元素 的个数 |C | 是 |G| 的 一个因子
正规子群和商群
正规子群
- 群G 有某个子群H,H的共轭子集 xHx^{-1} 也是一个子群,一般称为H的共轭子群
-
若群 G 的子群N 满足 x N x^{ - 1} = N ,则称子群 N 为 正规子群
-
由于正规子群的所有共轭子群就是它本身,所以一般也称之为不变子群
正规子群的性质
-
x\in G,正规子群关于 x 的左陪集和右陪集相同
-
群 G 的正规子群N 由群G的一个或几个完整的类构成。 若 一个子群包含母群的一个或几个完整的类,它必然是正规子群
商群
- 群 G 的阶是 |G|,其正规子群N的阶是 |N|,于是存在k=|G|/ |N|个陪集(包括N本身)
- g_1N (=N), g_2N, ..., g_kN
-
把这 k 个集合作为一个新的集合 S 的元,定义 S 中的元素的乘法为集合乘法,则S是一个群,称为商群,记作G/N:
-
S = {N, g_2N, ..., g_kN}
-
单群
-
没有正规子群的群称为单群
直积分解
- 对于任意的有限群,可以将其唯一的分解成一串单群
群链
- 商群分解的结果
商群与同态
群同态的性质
- 同态群之间单位元映射到单位元
- 同态群之间逆元映射到逆元
同态核
直积和半直积
直积群
- 设群H 和 K,如果
- H 和 K 只有单位元是共同的
- H 与 K 的所有元均可对易
- 则 是H 和 K 的直积群
直积群的性质
- 如果 ,则H 和 K 必为G的正规子群
-
如果 H 和 K 分别有 c 1 和 c 2 个类,则G有 c 1 c 2 个类
半直积群
- 设群H 和 K,如果
- H 和 K 只有单位元是共同的
-
H 在 K 作用下不变
-
则 称为H 和 K 的半直积群
-
且G 的阶等于 |H| × |K|
-
半直积群的性质
- ,则H是G 的正规子群,但K 只是G的子群而不是正规子群
对称群
对称性
- 对称性定理:一个物理体系的全体对称变换构成该体系的的一个对称群
- 一个轴对称物体或体系绕其对称轴的全体转动构成的群称为二维转动群 R_2 / SO(2)
-
一个球对称的物体或体系的全体转动构成的群称为三维转动群 R_3 / SO(3)
-
球对称体系的全体转动加上空间反演:三维正交群 O(3)
群轨道
-
设 G 是体系 A 的一个对称群,对某个x \in A,集合{gx| g\in G} 称为含x 的群轨道
置换群
置换群
-
置换群,是交换体系的某些部分而保持不变的对称群。它经常用于讨论全同粒子体系 的对称性
轮换表示
-
单行矩阵的长度称为轮换的长度
-
长度为2的轮换称为对换
置换群的共轭类
-
置换群的共轭类由置换的轮换结构决定,相同的轮换结构属于同一个类
-
具有相同的轮换结构的置换属于同一个类
Cayley定理
- 任何群同构于一个对称变换群
- 任何有限群同构于一个置换群