矩阵分析与应用-05-向量空间、内积空间与线性映射02

实内积空间

向量空间只定义了向量的加法以及标量与向量的乘法,并且向量空间的和、交与直和等也只涉及两个向量空间的元素(即向量)之间比较简单的关系。虽然这些运算非常重要,但对向量和矩阵的更复杂的有关运算便显得明显不够。因此,需要对向量空间中的向量定义其他运算。最自然的联想是应该增加关于两个向量之间的内部乘积(简称内积)的定义。这就引出了内积空间的概念。

定义1  实内积空间(real inner product space)是满足下列条件的实向量空间E,即对E中每一对向量x,y,存在向量xy的内积<x,y>服从以下公理:

(1)<x,x>  > 0,\forall x \neq 0 ,称为内积的严格正性(strict positivity)或称内积是正定的(positive definite),并且〈x, boldmath x)= 0\Leftrightarrowx = 0;

(2)<x, y>=〈y, x),称为内积的对称性(symmetry );

(3)<x,y+z>=<x,y>+<x,z>, \forallx, y,z;

(4)<ax, y>= a<x,y>对所有实向量x,y及所有实标量a成立。

定义2  若是一个实内积空间,并且xE^n,则 x 的范数(或“长度”)记作\left \| x \right \|,并定义为

\left \| x \right \| = <x,x>^{1/2}

定理1  在实内积空间里,范数具有以下性质:

(1)   \left \| 0 \right \| =0,并且\left \| x \right \| > 0, \forall x≠0;

(2)   \left \| cx \right \|=\left \| c \right \|\left \| x \right \|对所有向量x和标量c成立;

(3)范数服从极化恒等式(polarization identity)

<x,y> = \frac{1}{4}(\left \| x + y \right \| ^2 - \left \| x - y \right \| ^2), \forall x,y

(4)  范数满足平行四边形法则(parallelogram law)

\left \| x + y \right \|^2 + \left \| x - y \right \|^2 = 2\left \| x \right \|^2 + 2\left \| y \right \|^2, \forall x,y

(5)  范数服从Cauchy-Schwartz不等式

\left | <x,y> \right | ≤ \left \| x \right \|\left \| y \right \|

等号\left | <x,y> \right |=\left \| x \right \|\left \| y \right \|成立,当且仅当 y= cx,其中,c为某个非零常数。

(6)范数满足三角不等式

\left \| x + y \right \| \leq\left \| x \right \| + \left \| y \right \|

 复内积空间

定义1  复内积空间(complex inner product space)是满足下列条件的复向量空间C:对C中每一对向量x,y,存在复向量x和y 之间的内积<x, y>服从以下公理:

(1) x ≠ 0  \Rightarrow <x,x> > 0,称为内积的严格正性或称内积是正定的:

(2)<x,y>*= <y,x>,称为内积的共轭对称性(conjugate symmetry)或Hermitian性;

(3) <x,y + z> = <x,y> + <x,x>,对所有向量x,y,z成立;

(4) <cx,y>= c*<x,y>对所有复向量x, y 及所有复标量c成立。

定理1   在复内积空间里,范数具有以下性质:

(1)   \left \| 0 \right \| =0,并且\left \| x \right \| > 0, \forall x≠0;

(2)   \left \| cx \right \|=\left \| c \right \|\left \| x \right \|,其中,\left | c \right |表示复数c的模;

(3)极化恒等式

<x,y> = \frac{1}{4}(\left \| x + y \right \| ^2 - \left \| x - y \right \| ^2-j\left \| x + jy \right \| ^2 + j\left \| x- jy \right \| ^2)

(4)  平行四边形法则

\left \| x + y \right \|^2 + \left \| x - y \right \|^2 = 2\left \| x \right \|^2 + 2\left \| y \right \|^2, \forall x,y

(5)  Cauchy-Schwartz不等式

\left | <x,y> \right | ≤ \left \| x \right \|\left \| y \right \|

等号\left | <x,y> \right |=\left \| x \right \|\left \| y \right \|成立,当且仅当 y= cx,其中,c为某个非零常数。

(6)范数满足三角不等式

\left \| x + y \right \| \leq\left \| x \right \| + \left \| y \right \|

 线性映射

在技术科学、社会科学和数学的一些分支中,不同向量空间内向量之间的线性变换起着重要的作用。因此,为了研究两个向量空间之间的关系,有必要考虑能够实现从一个向量空间到另一个向量空间的转换关系的函数。事实上,在我们的日常生活中,也经常遇到这种转换。当我们欲将一幅图像变换为另一幅图像时,通常会移动它的位置,或者旋转它。

映射本身就是一类函数,因此常使用一般函数通用的符号来表示映射。若令V是Euctidean m空间R^m的子空间,W是R^n的子空间,则

T : V\rightarrow W

称为子空间V到子空间W的映射(或函数、变换),它表示将子空间V的每一个向量变成子空间W的一个相对应向量的一种规则。于是,若v∈V和 w ∈ W,则向量w是v的映射或变换,即有

w = T(v)

并称子空间V是映射T的始集(initial set)或域(domain),称W是T的终集(final set)或上域(codomain)。

若v是向量空间V的某个向量,则T(v)称为向量v在映射T下的像(image),或映射T在点v的值 (value),而v称为T(v)的原像。对于向量空间V的子空间A,映射T(A)表示子空间A的元素(即向量)在映射T下的值的集合,写作

T(A)=\left \{ T(v):v \in A \right \}

T(V)代表对V内所有向量的变换输出的集合,称为映射T的值域(range),其符号为

T(V) = Im(T) = \left \{ T(v):v\in V \right \}

一般地,映射T:V→W的值域Im(T)是W的一个子集合。如果Im(T)= W,即映射的值域等于向量空间W,则称T:V→W为满射(surjective)。映射T:V →W称为单(值映)射(injective),若它将V的不同向量映射为W的不同向量,即

v_1,v_2 \in V,v_1 \neq v_2 \Rightarrow T(v_1) \neq T(v_2)

或者

T(v_1) = T(v_2) \Rightarrow v_1 = v_2

若映射T:V→W既是单射,又是满射,则称之为一对一映射(bijective).

定义1 令V和W分别是R^mR^n的子空间,并且T : V→W是一映射。称T为线性映射或线性变换,若对于v ∈ V, w ∈W 和所有标量c,映射T满足线性X系式

T(v+w)=T(v) + T(w)

T(cv) = cT(v)

 合并为

T(c_1v+c_2w)=c_1T(v) + c_2T(w)

 定理1  令V和W是两个向量空间,T: V→W为一线性变换。

(1)若M是V的线性子空间,则T(M)是W的线性子空间;

(2)若N是W的线性子空间,则线性反变换T^{-1}(N)是V的线性子空间。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值