抄书:李文威《代数学方法:卷一》第四章 群论

$\DeclareMathOperator{\ord}{ord} \newcommand{\bs}{\backslash} \newcommand{\tl}{\triangleleft} \newcommand{\vp}{\varphi} \newcommand{\isoto}{\widetilde{\rightarrow}} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Ad}{Ad} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\End}{End} $

关于记号的说明
除非特别指明,以 $\subset$ 替代 $\subseteq$ 。

半群,幺半群与群

非空集合 $S$ 上的二元运算意谓一个映射 $S\times S \to S$,一般用乘法记号写为 $(x, y)\mapsto x\cdot y$,或索性简写为 $xy$;二元运算可视作 $S$ 上的某种乘法。反复操作可以得到形如 $x(yz)$,$(wx)(yz)$ 等等的表达式,括号在此表示元素相乘的先后顺序。如不致混淆,我们经常略去结构 $(S,\cdot)$ 中的二元运算,迳以 $S$ 概括。Bourbaki 为这种混沌未开的结构起了个贴切的名字,唤作“岩浆”(法文:le magma)。

首先收集关于 $(S, \cdot)$ 的一些初步概念。

  • 在 $S$ 上定义新的二元运算 $\star$ 使得 $x \star y = y \cdot x$,得到的新结构 $(S, \star)$ 记作 $S^{\mathrm{OP}}$,称为 $S$ 的相反结构。

  • 若对所有 $x, y \in S$ 都有等式 $xy = yx$,则称 $S$ 满足交换律,或称 $S$ 是交换的;这等价于 $S = S^{\mathrm{OP}}$ 。

  • 若对所有 $x,y,z \in S$ 都有等式 $(xy)z = x (yz)$,则称 $S$ 满足结合律

  • 设 $u \in S$,若相应的从 $S$ 到 $S$ 的左乘映射 $x\mapsto ux$ 是单射,则称 $u$ 满足左消去律;若右乘映射 $x\mapsto xu$ 是单射,则称 $u$ 满足右消去律。

  • 若 $A,B$ 为 $S$ 的子集,定义
    \[ AB := \{ab : a\in A, b \in B\} \subset S \]
    若 $A$ 或 $B$ 是独点集 $\{x\}$,则 $AB$ 相应地写作 $xB$ 或 $Ax$;在结合律的前提下还可以无歧义地定义子集 $ABC$,$ABCD$,……

$SS \subset S$。$SS$ 未必等于 $S$ 。

  • 若 $S$ 的子集 $A$ 满足 $AA\subset A$,则称 $A$ 对乘法封闭

  • 元素 $1\in S$ 称为幺元或单位元,如果
    \[\forall x \in S,\ x\cdot 1 = 1 \cdot x = x\]
    注意到 $S$ 的幺元至多有一个:若 $1,1' \in S$ 皆为幺元,则 $1 = 1\cdot 1' = 1'$ 。此外 $S$ 的幺元也是 $S^{\mathrm{OP}}$ 的幺元。一些书籍将幺元记为 $e$ 。

  • 假设存在幺元 $1$ 。对于元素 $x\in S$,若存在 $y \in S$ 使得 $yx = 1$,则称 $x$ 左可逆而 $y$ 是 $x$ 的一个左逆;若条件改为 $xy = 1$,则相应地得到右逆和右可逆的定义。左右皆可逆的元素称为可逆元。幺元 $1$ 显然可逆。

定义 4.1.1(半群与幺半群) 带有二元运算的非空集 $S$ 若满足结合律,则称之为半群。存在幺元的半群称为幺半群。若 $M$ 是幺半群,而子集 $M'\subset M$ 满足 (i) $M'$ 对乘法封闭,(ii) $1\in M'$,则称 $M'$ 为 $M$ 的子幺半群。

对于半群 $S$,结合律确保了任意元素 $x_1, \dots, x_n\in S$ 的连乘积 $x_1(x_2(\dots x_n) \dots )$ 可以无歧义地写作 $x_1\dots x_n$,其解读与安插括号的方式无关。当 $S$ 交换时,此连乘积甚且与 $x_1, \dots, x_n$ 的顺序无关。

以下设 $M$ 是幺半群。易证其中的左(右)可逆元满足左(右)消去律。(证明:设 $x,y \in M$ 满足 $yx= 1$ 。$\forall a, b\in M, xa = xb \implies y(xa) = y(xb) \implies (yx)a = (yx)b \implies 1a = 1b \implies a = b$)若 $x\in M$ 可逆,则 $x$ 的左逆和右逆皆唯一并相等,记为 $x^{-1}$ 。论证如下:若 $x$ 有左逆元 $y$ 和右逆元 $y'$,则 $y' = (yx)y' = y(xy') = y$,由此可一并导出左,右逆的唯一性和等式。所有可逆元构成的子集记为 $M^{\times}$,它对乘法封闭,实际上
\[\forall x, y \in M^{\times},\ (xy)^{-1} = y^{-1}x^{-1}\]

$x\mapsto x^{-1}$ 是从 $M^{\times}$ 到 $M^{\times}$ 的双射。

定义 4.1.2(群)所有元素皆可逆的幺半群称为。群 $G$ 的基数 $|G|$ 称为它的

任意幺半群 $M$ 的可逆元子集 $M^{\times}$ 对 $M$ 的乘法构成一个群,称为 $M$ 的单位群。根据先前关于二元运算的讨论,可以定义交换幺半群或交换群的概念,后者又称 Abel 群。用同样的套路定义相反幺半群或相反群,并沿用符号 $G\mapsto G^{\mathrm{OP}}$ 。

对于 $n\in\mathbb{Z_{\ge 0}}$ 和 $x\in M$,我们引入记号
\[ x^{n} := \underbrace{x \dots x}_{\text{$n$ 项}} \]
特别地,$x^0 := 1$,并且对可逆元有 $(x^{-1})^n = (x^n)^{-1}$,后者可以无歧义地记作 $x^{-n}$ 。

约定 4.1.3 对于交换幺半群,惯例是将其二元运算 $\cdot$ 写成加法 $+$,并将幺元 $1$ 写成 $0$,元素 $x$ 的逆写成 $-x$;但一些场合仍适用乘法记号。必要时另外申明。

例 4.1.4 非负实数集 $\mathbb{R}_{\ge 0}$ 对加法构成幺半群,而 $\mathbb{R}_{>0}$ 构成半群。进一步说,空间 $\mathbb{R}^d$ 中的任意闭凸锥 $C$ 对向量加法构成幺半群,而 $C$ 的内点集 $\mathrm{int}(C)$ 若非空则构成半群。两者皆交换。考虑锥中整点便得到幺半群 $C\cap\mathbb{Z}^d$ 及半群 $\mathbb{int}(C)\cap\mathbb{Z}^d$;它们一方面直接联系于线性不定方程和格点等计数组合学问题,另一方面则定义了一类称为仿射环面簇的几何对象。这些交换幺半群的结构远比相应的交换群要丰富得多。

例 4.1.5(一般线性群)考虑 $n\times n$ 实矩阵构成的集合 $M_n(\mathbb R)$,并定义 $\mathrm{GL}(n, \mathbb R)$ 为其中得可逆矩阵构成的子集。显见 $M_n(\mathbb R)$ 对矩阵乘法构成幺半群,其幺元为单位矩阵,但它不是群(例:零矩阵不可逆)。然而 $\mathrm{GL}(n, \mathbb R)$ 对矩阵乘法构成群,它正是 $M_n(\mathbb R)$ 的单位群。这些结构在 $n > 1$ 时非交换。

更一般地说,对任意域 $F$ 依然能定义 $M_n(F)$ 和 $\mathrm{GL}(n,F)$,后者称为 $F$ 的一般线性群;域是一种能作加减乘除的代数结构,如大家熟悉的 $\mathbb{Q,R,C}$ 等,或模素数 $p$ 的同余系 $\mathbb Z/p\mathbb Z$ 。

例 4.1.6(对称群) 从任意集合 $X$ 映到自身的全体双射构成一个群,称为 $X$ 上的对称群 $\mathfrak{S}_X := \mathrm{Aut}(X)$ 。其中的二元运算是双射的合成 $(f,g)\mapsto f \circ g$,幺元为恒等映射 $\mathrm{id}_X \colon X \to X$,而逆元无非是逆映射。当 $X ={1, \dots, n} (n \in \mathbb Z_{\ge 1})$ 时也记为 $\mathfrak{S}_n$,称为 $n$ 次的对称群或置换群。注意到 $|\mathfrak{S}_n| = n!$ 。

一般线性群和对称群是群论中的两类重要例子,请读者铭记。

定义 4.1.7(子群和正规子群)设 $G$ 为群,子集 $H \subset G$ 被称为 $G$ 的子群,如果 (i) $H$ 是子幺半群,(ii) 对任意 $x\in H$ 有 $x^{-1}\in H$ 。假若子群 $H$ 对所有 $x\in G$ 满足 $xH=Hx$,则称 $H$ 为 $G$ 的正规子群,记作 $H \triangleleft G $ 。子群 $\{1\}\triangleleft G$ 称作 $G$ 的平凡子群

正规子群的定义可以改写为 $\forall x \in G$,$xHx^{-1} = H$ 。由于 $xHx^{-1} = H$ 等价于 $xHx^{-1}\subset H$ 且 $x^{-1}Hx\subset H$,验证正规性时仅须对每个 $x\in G$ 证明 $xHx^{-1} \subset H$ 即可。($x$ 取遍 $G$,$x^{-1}$ 亦取遍 $G$)最早洞悉正规子群的重要性者是 Galois。

群 $G$ 是其本身的正规子群。
证明:由于 $G$ 对乘法封闭,$\forall x \in G,\ xGx^{-1} \subset G$ 。

定义 4.1.8(单群)若群 $G$ 不具有除 $1$,$G$ 之外的正规子群,则称 $G$ 为单群

交错群 $\mathfrak A_n$($n\ge 5$)是最早被发现的一族非交换的有限单群。有限单群在同构意义下的分类是群论发展的重大里程碑。从 Hölder 在 1892 年提出分类问题,直到 Aschbacher 和 Smith 在 2004 年左右补全 Gorenstein 等人的证明,历时凡百余年。

子群的交仍是子群,正规子群的交依然正规。设 $E\subset G$ 是任意子集,则包含 $E$ 的最小子群称为由 $E$ 生成的子群,记为 $\langle E\rangle$ 。其中的元素是由 $E$ 的元素出发,从乘法及取逆运算所能得到的所有元素。一种直截了当的写法是
\[ \langle E\rangle := \bigcap_{\substack{H\subset G \colon \text{子群}\\H\supset E}} H.\]

同理,由 $E$ 生成的正规子群定义为 $\bigcap_{E\subset N\triangleleft G} N$ 。当 $E$ 是独点集 $\{x\}$ 时,使用简写
\[\langle x \rangle := \langle \{x\} \rangle = \{ x^n : n \in\mathbb Z\} \]
对于任意 $G$ 与 $x\in G$,记 $\ord(x) := |\langle x \rangle|$,称为 $x$ 的

定义 4.1.9(循环群)若群 $G$ 中存在元素 $x$ 使得 $G = \langle x \rangle$,则称 $G$ 为循环群。换言之,循环群是能由单个元素生成的群。

例 4.1.10 整数全体 $\mathbb Z$ 对加法构成群。它由 $1\in\mathbb Z$ 生成故循环。所有子群 $H\subset G$ 都形如 $H=n\mathbb Z=\{m\in\mathbb Z : n\mid m\}$:当 $H \ne \{0\}$ 时取 $n$ 为 $H\cap\mathbb Z_{>0}$ 的最小元即可。

定义 4.1.11(陪集)设 $H$ 为群 $G$ 的子群。定义:

  • 左陪集:$G$ 中形如 $xH$ 的子集,全体左陪集构成的集合记作 $G/H$;
  • 右陪集:$G$ 中形如 $Hx$ 的子集,全体右陪集构成的集合记作 $H \bs G$;
  • 双陪集:设 $K$ 为另一子群,则 $G$ 中形如 $HxK := \{hxk : h\in H, k\in K\}$ 的子集称为 $G$ 对 $(H,K)$ 的双陪集,全体双陪集构成的集合记作 $H \bs G/K$.
    陪集中的元素称为该陪集的一个代表元。若 $H \triangleleft G$ 则左,右陪集无异。由于陪集的左右之分总能从符号辨明,以下不再申明。定义 $H$ 在 $G$ 中的指数
    \[
    (G : H) := |G/H|.
    \]
    陪集空间 $G/H$ 未必有限,在此视 $(G : H)$ 为基数。

左右陪集其实是双陪集的特例,分别取 $H$ 或 $K$ 为 $\{1\}$ 即是。因此以下结果仅对双陪集陈述。

引理 4.1.12 设 $H,K$ 为群 $G$ 的子群,则

(i) 对于任意双陪集 $HxK$,$HyK$,其交非空当且仅当 $HxK = HyK$;

(ii) $G$ 写作无交并 $G = \bigsqcup_x HxK$,其中我们对 $H \bs G/K$ 中的每个双陪集挑选一代表元 $x$ 。

证明 设 $HxK \cap HyK \ne \emptyset$ 。若 $hxk = h'yk'$,则 $x = h^{-1}h'yk'k^{-1} \in HyK$,从而 $HxK\subset HHyKK = HyK$;由对称性得 $HyK \in HxK$,故二者相等。由于任意 $g\in G$ 都属于 $HgK$,断言的无交并是显然的。

对每个 $x\in G$,左乘 $h \mapsto xh$ 给出集合间的双射 $H \to xH$,这是因为群中的元素满足左消去律。同理,右乘给出双射 $H \to Hx$ 。

命题 4.1.13 设 $H$ 为群 $G$ 的子群,则

(i) $|G| = (G : H) |H|$,特别地,当 $G$ 有限时 $|H|$ 必整除 $|G|$(称为 Lagrange 定理);

(ii) 若 $K$ 是 $H$ 的子群,则 $(G : K) = (G : H)(H : K)$ 。
这里的乘法是基数的乘法。

证明 陪集分解
\begin{aligned}
H &= \bigsqcup_y yK, \\
G &= \bigsqcup_x xH = \bigsqcup_{x,y} xyK
\end{aligned}
可用以证明 (ii). 由于 $(G : 1) = |G|$,$(H : 1) = |H|$,取 $K = \{1\}$ 即得 (i)。

定义 4.1.14(中心,中心化子与正规化子)设 $G$ 为群。

(i) $G$ 的中心定义为 $Z_G := \{z\in G : \forall x\in G, xz = zx\}$;

(ii) 设 $E \subset G$,定义其中心化子为 $Z_G(E) := \{z\in G : \forall x\in E, xz = zx\}$;

(iii) 承上,定义其正规化子为 $N_G(E) := \{n\in G : nEn^{-1} = E\}$ 。
当 $E$ 是独点集 $\{x\}$ 时,使用简写 $Z_G(x)$ 和 $N_G(x)$ 。

易见 $Z_G(E)$ 和 $N_G(E)$ 都是子群,而且 $Z_G(E) \tl N_G(E)$,它们仅与 $E$ 生成的子群 $\langle E \rangle$ 有关。若 $H$ 是子群则 $H \tl N_G(H)$ 。取 $E=G$ 即有
\[
Z_G(G) = Z_G \tl G = N_G(G).
\]

验证

  • $xz = zx \implies x = zxz^{-1} \implies z^{-1}x = xz^{-1}$
  • $nEn^{-1} = E \implies n^{-1} E n = n^{-1}(nEn^{-1}) n = E$
  • 显然 $Z_G(E) \subset N_G(E)$ 。令 $n \in N_G(E), z \in Z_G(E)$,我们要证明 $nzn^{-1} \in Z_G(E)$ 。令 $x\in E$,即要证明 $x(nzn^{-1}) = (nzn^{-1})x $ 。
    $(nzn^{-1})x(nzn^{-1})^{-1} = nz(n^{-1}xn)z^{-1}n^{-1}$ 。注意到 $n^{-1}xn \in E$,所以 $ nz(n^{-1}xn)z^{-1}n^{-1} = nzz^{-1}(n^{-1}xn)n^{-1} = n(n^{-1}xn)n^{-1} = x$
    这个命题我没证出来,参考了 https://math.stackexchange.com/a/546967/538611
    我没看出 $x(nzn^{-1}) = (nzn^{-1})x$ 可以写成 $x = (nzn^{-1})x(nzn^{-1})^{-1}$,于是就不知道 $n \in N_G(E)$ 这个条件怎么用。
    There are two "usual" ways to do this. One is simply by writing up the definitions and checking by doing some rewriting of things. The other is by defining a map from $N_G(E)$ to a suitable group such that $Z_G(E)$ is the kernel. – Tobias Kildetoft

注记 4.1.15 若 $N,H\subset G$ 为子群,而且 $H\subset N_G(N)$,则 $HN = NH$ 是 $G$ 的子群而且 $N \tl NH$ 。请读者自行验证。

验证
令 $h\in H$ 。$h\in N_G(N) \implies hN = Nh \implies HN = NH$,从而易见 $HN$ 是 $G$ 的子群。
显然 $N$ 是 $HN$ 的子群。令 $n\in N, h\in H$, $n'\in N$,我们要证明 $(nh)n'(nh)^{-1}\in N$ 。注意到 $(nh)n'(nh)^{-1} = n(hn'h^{-1})n^{-1}$ 。
$H\subset N_G(N) \implies hn'h^{-1} \in N \implies n(hn'h^{-1})n^{-1} \in N$

4.2 同态和商群

同态的意义是保结构的映射。对于带二元运算的非空集 $S_1, S_2$,同态 $\vp\colon S_1\to S_2$ 所要保持的结构无非是二元运算,即 $\forall x, y\in S_1,\ \vp(xy) = \vp(x)\vp(y)$ 。准此要领可定义半群的同态。然而幺半群的情形更常见也更实用,此时我们要求同态必须兼保乘法和幺元。

定义 4.2.1(同态与同构)设 $M_1,M_2$ 为幺半群。映射 $\vp\colon M_1\to M_2$ 如满足下述性质即称为同态

(i) $\forall x, y \in M_1$,$\vp(xy) = \vp(x)\vp(y)$;

(ii) $\vp(1) = 1$ 。
从幺半群 $M$ 映至自身的同态称为自同态,如恒等映射 $\mathrm{id}_M\colon M\to M$ 。同态的合成仍为同态。取常值 $1$ 的同态称为平凡同态

若存在同态 $\psi\colon M_2\to M_1$ 使得 $\vp\psi = \mathrm{id}_{M_2}$,$\psi\vp = \mathrm{id}_{M_1}$,则称 $\vp$ 可逆而 $\psi$ 是 $\vp$ 的逆;可逆同态称作同构,写成 $\vp \colon M_1 \isoto M_2$ 。 此时我们也称 $M_1$ 与 $M_2$ 同构。从幺半群映至自身的同构称为自同构

从 $M_1$ 到 $M_2$ 的同态所成集合写作 $\Hom(M_1, M_2)$ 。下述性质是显然的:

  • $\vp\colon M_1\to M_2$ 的逆若存在则唯一,记作 $\vp^{-1}$;
  • $\vp$ 可逆当且仅当 $\vp$ 是双射。
  • $\vp$ 诱导出单位群之间的映射 $M_1^\times \to M_2^\times$ 。事实上,$\forall x\in M_1^\times$,$\vp(x)^{-1} = \vp(x^{-1})$ 。
  • 对任意幺半群 $M$,他的所有自同构对映射的合成 $\circ$ 构成一个幺半群 $\mathrm{End}(M) := \Hom(M,M)$,后者的单位群 $\Aut(M)$ 是 $M$ 的自同构群,顾名思义由自同构组成。

我们已经对幺半群定义了同态的概念。群是幺半群的特例,群之间的同态也称为群同态,同样地定义群同构,群自同构等概念。而同态的定义在群的情形还有如下简化,对于实际操作相当方便,我们以后将不加说明地使用。

命题 4.2.2 设 $G_1,G_2$ 为群。映射 $\vp\colon G_1\to G_2$ 为群同态当且仅当对所有 $x,y\in G_1$ 皆有 $\vp(xy) = \vp(x)\vp(y)$ 。

** 证明** 关键是“当”的方向。对 $\vp(1)\vp(1) = \vp(1\cdot 1) = \vp(1)$ 两边左乘以 $\vp(1)^{-1}$ 即得 $\vp(1) = 1$ 。

关键是“当”的方向是相当“仅当”的方向而言的,而不是说“当”有两个方向,应考虑“当”的某个方向而非另一方向。

有一类群同构格外常见,称为内自同构伴随同构:设 $G$ 为群,对于 $x\in G$,定义自同构
\begin{aligned}
\Ad_x \colon &G \to G \\
& g \mapsto {}^xg := xgx^{-1}.
\end{aligned}
容易验证 $\Ad_1 = \id_G$ 而且 $\Ad_{xy} = \Ad_x \circ \Ad_y$,因此我们进一步导出群同态
\begin{aligned}
\Ad \colon & G \to \Aut(G) \\
& x \mapsto \Ad_x.
\end{aligned}

定义 4.2.3(核) 设 $\vp\colon G_1\to G_2$ 为群同态。它的像记作 $\im(\vp) := \{\vp(x) : x \in G_1\}$,而其定义为
\[ \ker(\vp) := \vp^{-1}(1) . \]
从定义立刻得到 $\im(\vp)$ 是 $G_2$ 的子群,而 $\ker(\vp)$ 是 $G_1$ 的正规子群。举例明之,群的中心 $Z_G$ 可描述为核 $\ker[\Ad : G \to \Aut(G)]$ 。

到了回头考察商结构的时候。设 $S$ 为非空集合,而 $\sim$ 是 $S$ 上的等价关系,相应的等价类构成了商集 $S/\sim$ 。包含元素 $x\in S$ 的等价类记为 $[x]$ 。数学家关心的一般问题是:如何让 $S/\sim$ 继承 $S$ 的代数或拓扑等诸般结构?在此我们假设 $S$ 带有二元运算,继承的意义是让商映射 $x\mapsto [x]$ 保持二元运算,换言之,要求等式
\[
[x] \cdot [y] = [x\cdot y],\quad x, y\in S
\]
在 $S/\sim$ 中成立。显然这唯一地刻画了 $S/\sim$ 的二元运算,问题是此运算是否良定?读者沉思半晌当可明白,这里必须加上条件
\begin{equation}
(x \sim x') \wedge (y\sim y') \implies xy \sim x'y', \quad x,x',y,y' \in S. \label{well-defined}
\end{equation}

这般定出的结构 $S/\sim$ 称作商结构。若 $S$ 是半群(或幺半群,群),则 $S/\sim$ 依然;在后两种情况下,$S/\sim$ 的幺元是 $[1]$,元素的逆由 $[x]^{-1} = [x^{-1}]$ 给出。以下考虑幺半群 $M$ 的情形。对于 $M$ 上满足 \eqref{well-defined} 的等价关系 $\sim$,映射 $x\mapsto [x]$ 给出同态 $M \to M/\sim$ 。商幺半群 $M/\sim$ 满足如下性质。

命题 4.2.4 对于任意同态 $\vp\colon M\to M'$ 使得 $(x\sim y) \implies \vp(x) = \vp(y)$ 者,存在唯一的同态 $\bar\vp\colon (M/\sim) \to M'$ 使得下图交换。
\[
\begin{xy}
\xymatrix{
M \ar[r]^f \ar[d] & M' \\
M/\sim \ar[ur]_{\exist !\bar\vp}
}
\end{xy}
\]
这里的 $\bar\vp$ 称为 $\vp$ 的诱导同态。图表交换意谓 $\bar\vp$ 与 $M \to M/\sim$ 的合成等于 $\vp$,请参看 $\S2.1$ 的讨论。

证明 唯一的取法是 $\bar\vp([x]) = \vp(x)$,其中 $x\in M$ 。

命题 4.2.5 设 $\vp\colon M\to M'$ 为满同态。定义 $M$ 上的等价关系 $x \sim y \iff \vp(x) = \vp(y)$,则 $\sim$ 满足 \eqref{well-defined},而且诱导同态 $\bar\vp\colon (M/\sim)\to M'$ 是同构。

证明 条件 \eqref{well-defined} 一望可知。从 $\sim$ 的定义知 $\bar\vp$ 是双射,故为同构。

对于群 $G$ 的情形,满足条件 \eqref{well-defined} 的等价关系有更简单的描述:定义 $N := \{x\in G : 1 \sim x \}$,则
\begin{equation}
(x \sim y) \iff (x^{-1}y \in N). \label{rel-on-G}
\end{equation}
因此等价关系 $\sim$ 完全由子集 $N$ 确定。反之,给定子集 $N$,可直接验证 \eqref{rel-on-G} 给出等价关系当且仅当 $N$ 包含 $1$ 而且对取逆和乘法封闭,亦即 $N$ 是子群;它满足 \eqref{well-defined} 当且仅当 $N$ 是正规子群。我们有双射(回忆定义 4.1.11)
\begin{aligned}
G/\sim &\isoto G/N \\
[x] &\mapsto xN = Nx .
\end{aligned}
这就解释了以下的商群定义。

定义 4.2.6(商群) 设 $G$ 为群,$N$ 为其正规子群。在陪集空间 $G/N$ 上定义二元运算
\[
xN \cdot yN = xyN,\quad x,y \in G.
\]
这使得 $G/N$ 构成一个群,称为 $G$ 模 $N$ 的商群,其中的幺元是 $1\cdot N$ 而逆由 $(xN)^{-1} = x^{-1}N$ 给出。群同态
\begin{aligned}
\pi \colon G & \to G/N \\
x & \mapsto xN
\end{aligned}
称为商同态。

注意到商同态 $\pi \colon G \to G/N$ 总是满的,而且 $\ker(\pi) = N$ 。现在可以陈述同态的几个基本性质。

命题 4.2.7 设 $\vp\colon G_1 \to G_2$ 是群同态,则 $\vp$ 诱导出同构 $\bar\vp\colon G_1/\ker(\vp) \isoto \im(\vp)$,它映陪集 $g\cdot \ker(\vp)$ 为 $\vp(g)$ 。

证明 应用命题 $4.2.5$ 。

命题 4.2.8 设 $\vp\colon G_1\to G_2$ 是群之间的满同态。则有
\[
\newdir{+<}{{}*!/-5pt/@{<}}
\newdir{++<}{{}*!/-11.5pt/@{<}}
\begin{xy}
\xymatrix @R=0pc @C=3pc {
{\{子群 H_2 \subset G_2\}} \ar@{+<->}[r]^(.39){1:1} & {\{子群 H_1 \subset G_1 : H_1 \supset \ker(\vp)\}} \\
{\cup} & {\cup} \\
{\{正规子群 H_2 \tl G_2 \}} \ar@{++<->}[r]^(.41){1:1} & {\{正规子群 H_1 \tl G_1 : H_1 \supset \ker(\vp) \}} \\
H_2 \ar@{|->}[r] & \vp^{-1}(H_2) \\
\vp(H_1) & H_1 \ar@{|->}[l]
}
\end{xy}
\]

转载于:https://www.cnblogs.com/Patt/p/9885065.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
原书序: 代数学是数学的一个重要的基础的分支,历史悠久.我国古代在代数学方面有光辉的成就.一百多年来,尤其是20世纪以来,随着数学的发展以及应用的需要,代数学的研究对象以及研究方法发生了巨大的变革.一系列的新的代数领域被建立起来,大大地扩充了代数学的研究范围,形成了所谓近世代数学.它与以代数方程的根的计算与分布为研究中心的古典代数学有所不同,它是以研究数字、文字和更一般元素的代数运算的规律及各种代数结构 群、环、代数、域、格等的性质为其中心问题的.由于代数运算贯穿在任何数学理论和应用问题里,也由于代数结构及其中元素的一般性,近世代数学的研究在数学中是具有基本性的.它的方法和结果渗透到那些与它相接近的各个不同的数学分支中,成为一些有着新面貌和新内容的数学领域一一代数数论、代数几何、拓扑代数、Lie群和Lie代数、代数拓扑、泛函分析等.这样,近世代数学就对于全部现代数学的发展有着显著的影响,并且对于一些其他的科学领域(如理论物理学、计算机原理等)也有较直接的应用。 历史上,近世代数学可以说是从19世纪之初发生的,Galois应用群的概念对于高次代数方程是否可以用根式来解的问题进行了研究并给出彻底的解答,他可以说是近世代数学的创始者.从那时起,近世代数学由萌芽而成长而发达.大概由19世纪的末叶开始,群以及紧相联系着的不变量的概念,在几何上、在分析上以及在理论物理上,都产生了重大的影响.深刻研究群以及其他相关的概念,如环、理想、线性空间、代数等,应用于代数学各个部分,这就形成近世代数学更进一步的演进,完成了以前独立发展着的三个主要方面——代数数论、线性代数及代数、群论的综合.对于这一步统一的工作,近代德国代数学派起了主要的作用.由Dedekind及Hilbert于19世纪末叶的工作开始,steinitz于1911年发表的论文对于代数学抽象化工作贡献很大,其后自1920年左右起以Noether?和Artin及她和他的学生们为中心,近世代数学的发展极为灿烂。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值