【Gurobi】学习笔记 | (三)Model Part2 适用于Python

本文介绍了Gurobi中的关键Model对象方法,包括添加线性约束(addLConstr)、矩阵约束(addMConstr和addMQConstr)、变量定义(addMVar和addQConstr)以及范围约束(addRange)和基本变量(addVar/addVars),适合初学者了解Gurobi在优化问题求解中的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​​在这里插入图片描述

本文章参考Gurobi官方手册,内容上为更适合入门者学习,有所删减。

本节内容依旧是Model对象的方法(不得不说Model对象真的非常非常重要了,官方文档里这一段看都看不完)
首先还是老规矩,提醒大家先调用gurobipy的库。

下载和调用gurobipy库

进入Python环境,下载名为“gurobi”的软件包,并且在每次使用Gurobi求解时,需要引入这个软件包。


from gurobipy import *

Model.addLConstr()

  • 语句:addLConstr ( lhs, sense=None, rhs=None, name="" )
  • 功能:添加线性约束,该方法要比addConstr()
  • 输入:lhs新约束的左侧,可以使常数、变量、LinExpr、TempConstr(但必须是休闲型形式);sense约束的比较运算符GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUALrhs新约束的右侧,可以使常数、变量、LinExpr
  • 输出:新约束
  • 说明:无
model.addLConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addLConstr(x + y <= 2.0, "c1")
model.addLConstr(LinExpr([1.0,1.0], [x,y]), GRB.LESS_EQUAL, 1)

Model.addMConstr()

  • 语句:addMConstr ( A, x, sense, b, name="" )
  • 功能:使用矩阵向模型添加一组线性约束
  • 输入:学过线性代数一眼就看明白了
  • 输出:一组约束
  • 说明:A必须是NumPy或者SciPy的矩阵才行;x可以用None;决策变量长度必须要和A的第二维大小相匹配;右端项长度必须与A的第一个维度大小相匹配(这都是线性代数的知识啦)
A = np.full((5, 10), 1)
x = model.addMVar(10)
b = np.full(5, 1)

model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值