本文章参考Gurobi官方手册,内容上为更适合入门者学习,有所删减。
本节内容依旧是Model对象的方法(不得不说Model对象真的非常非常重要了,官方文档里这一段看都看不完)
首先还是老规矩,提醒大家先调用gurobipy
的库。
下载和调用gurobipy库
进入Python环境,下载名为“gurobi”的软件包,并且在每次使用Gurobi求解时,需要引入这个软件包。
from gurobipy import *
Model.addLConstr()
- 语句:
addLConstr ( lhs, sense=None, rhs=None, name="" )
- 功能:添加线性约束,该方法要比
addConstr()
快 - 输入:
lhs
新约束的左侧,可以使常数、变量、LinExpr、TempConstr(但必须是休闲型形式);sense
约束的比较运算符GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL
;rhs
新约束的右侧,可以使常数、变量、LinExpr - 输出:新约束
- 说明:无
model.addLConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addLConstr(x + y <= 2.0, "c1")
model.addLConstr(LinExpr([1.0,1.0], [x,y]), GRB.LESS_EQUAL, 1)
Model.addMConstr()
- 语句:
addMConstr ( A, x, sense, b, name="" )
- 功能:使用矩阵向模型添加一组线性约束
- 输入:学过线性代数一眼就看明白了
- 输出:一组约束
- 说明:
A
必须是NumPy或者SciPy的矩阵才行;x
可以用None;决策变量长度必须要和A
的第二维大小相匹配;右端项长度必须与A
的第一个维度大小相匹配(这都是线性代数的知识啦)
A = np.full((5, 10), 1)
x = model.addMVar(10)
b = np.full(5, 1)
model