线性代数|定义:矩阵的秩

前置知识


前置定理 1 对于任何非零矩阵 m × n \boldsymbol{m \times n} m×n,总可经有限次初等行变换将它变为行阶梯形矩阵和行最简形矩阵。

证明见 “【定义】矩阵初等变换和矩阵等价”。

前置性质 2 若行列式的某一行(列)的元素都是两数之和,例如第 i i i 行的元素都是两数之和:
D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + a i 1 ′ a i 2 + a i 2 ′ ⋯ a i n + a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} + a'_{i1} & a_{i2} + a'_{i2} & \cdots & a_{in} + a'_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} D= a11ai1+ai1an1a12ai2+ai2an2a1nain+ainann
D D D 等于下列两个行列式之和
D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 ′ a i 2 ′ ⋯ a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a'_{i1} & a'_{i2} & \cdots & a'_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} D= a11ai1an1a12ai2an2a1nainann + a11ai1an1a12ai2an2a1nainann

证明见 “行列式的性质”。

前置性质3 行列式的某一行(列)中所有的元素都乘同一个数 k k k,等于用数 k k k 乘此行列式。

证明见 “行列式的性质”。

注:因为 Latex 没有长的 ∼ i n f o \stackrel{info}{\sim} info 符号,故使用 → i n f o \xrightarrow{info} info 表示矩阵的初等变换。


因为任何非零矩阵 m × n \boldsymbol{m \times n} m×n,总可经有限次初等行变换将它变为行阶梯形矩阵和行最简形矩阵。我们可以直观地感觉到,行等价的矩阵的行最简形矩阵矩阵是相同的,行阶梯形矩阵中非零行的行数也是相同的。

为了描述矩阵中非零行的数量,我们引入行列式非零的概念。于是,有矩阵子式的定义如下:

定义 1 在 $m \times n $ 矩阵 A \boldsymbol{A} A 中,任取 k k k 行与 k k k 列( k ≤ m , k ≤ n k \le m, k \le n km,kn),位于这些行列交叉处的 k 2 k^2 k2 个元素,不改变它们在 A \boldsymbol{A} A 中所处的位置次序而得的 k k k 阶行列式,称为 矩阵 A \boldsymbol{A} A k k k 阶子式

对于拥有 n n n 个非零行的行阶梯形矩阵。我们取它所有非零行的首非零元所在的行和列所构成的 n n n 阶子式,子式对角线左下的元素均为 0 0 0,对角线的元素是所有非零行的首非零元,为上三角形行列式,显然是非零的。而它的任一 n + 1 n+1 n+1 阶子式,一定包含零行,从而使子式成为 0 0 0。因此,拥有 n n n 个非零行的行阶梯形矩阵的最高阶非零子式为 n n n

对于对应的行阶梯形矩阵拥有 n n n 非零行的一般矩阵,它的任一 n + 1 n+1 n+1 阶子式,虽可能不包含零行,但因为矩阵的初等行变换不影响行列式是否为零,所以通过变换后该子式仍然为零。由此,我们直观地感觉到,再引入矩阵子式的概念后,可以将 “行等价的矩阵的行阶梯形矩阵中非零行的行数是相同的” 变成 “行等价的矩阵非零子式的最高阶数相等”。

基于这个直观的感觉,我们有定理及证明如下:

定理 1 设 A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} ArB,则 A \boldsymbol{A} A B \boldsymbol{B} B 中非零子式的最高阶数相等。

证明 因为只要经一次初等行变换结论成立,即可知经有限次初等行变换结论也成立,所以只要证明 B \boldsymbol{B} B 是由 A \boldsymbol{A} A 经过一次初等变换而得的情形即可。

D D D A \boldsymbol{A} A r r r 阶非零子式。

(a)当 A → r i ↔ r j B \boldsymbol{A} \xrightarrow{r_i \leftrightarrow r_j} \boldsymbol{B} Arirj B A → r i × k B \boldsymbol{A} \xrightarrow{r_i \times k} \boldsymbol{B} Ari×k B k ≠ 0 k \ne 0 k=0)时,在 B \boldsymbol{B} B 中总能找到与 D D D 相对应的 r r r 阶子式 D 1 D_1 D1,由于 D 1 = D D_1 = D D1=D D 1 = − D D_1 = -D D1=D D 1 = k D D_1 = kD D1=kD,因此 D 1 ≠ 0 D_1 \ne 0 D1=0

(b)当 A → r i + k r j B \boldsymbol{A} \xrightarrow{r_i + k r_j} \boldsymbol{B} Ari+krj B 时,因为对于作变换 r i ↔ r j r_i \leftrightarrow r_j rirj 时结论成立,所以只需要考虑 A → r 1 + k r 2 B \boldsymbol{A} \xrightarrow{r_1 + k r_2} \boldsymbol{B} Ar1+kr2 B 这一特殊情形即可。

D D D 中不包含 A \boldsymbol{A} A 的第 1 行时,初等行变换前后 D D D 没有变化, D D D 仍然是 B \boldsymbol{B} B r r r 阶非零子式。

D D D 中包含 A \boldsymbol{A} A 的第 1 行时,可以将 B \boldsymbol{B} B 中与 D D D 对应的 r r r 阶子式记作 D 1 D_1 D1,根据前置性质 2 和前置性质 3,有
D 1 = ∣ r 1 + k r 2 r p ⋮ r q ∣ = ∣ r 1 r p ⋮ r q ∣ + ∣ k r 2 r p ⋮ r q ∣ = ∣ r 1 r p ⋮ r q ∣ + k ∣ r 2 r p ⋮ r q ∣ = D + k D 2 D_1 = \begin{vmatrix} r_1 + k r_2 \\ r_p \\ \vdots \\ r_q \end{vmatrix} = \begin{vmatrix} r_1 \\ r_p \\ \vdots \\ r_q \end{vmatrix} + \begin{vmatrix} k r_2 \\ r_p \\ \vdots \\ r_q \end{vmatrix} = \begin{vmatrix} r_1 \\ r_p \\ \vdots \\ r_q \end{vmatrix} + k \begin{vmatrix} r_2 \\ r_p \\ \vdots \\ r_q \end{vmatrix} = D + k D_2 D1= r1+kr2rprq = r1rprq + kr2rprq = r1rprq +k r2rprq =D+kD2
p = 2 p=2 p=2,则 D 2 = 0 D_2 = 0 D2=0,有 D 1 = D ≠ 0 D_1 = D \ne 0 D1=D=0。若 p ≠ 2 p \ne 2 p=2,则 D 2 D_2 D2 也是 B \boldsymbol{B} B r r r 阶子式,因为 D 1 − k D 2 = D ≠ 0 D_1 - k D_2 = D \ne 0 D1kD2=D=0,所以 D 1 D_1 D1 D 2 D_2 D2 不同时为 0 0 0;因此, B \boldsymbol{B} B 中一定存在 r r r 阶非零子式 D 1 D_1 D1 D 2 D_2 D2

不妨设 A \boldsymbol{A} A B \boldsymbol{B} B 中非零子式的最高阶数分别为 s s s t t t,上述(a)和(b)证明了 s ≤ t s \le t st。因为三种初等变换都是可逆的,所以 A \boldsymbol{A} A 也是由 B \boldsymbol{B} B 经过一次初等变换得到的,又有 t ≤ s t \le s ts。于是, s = t s = t s=t

由此,得到矩阵的秩的定义:

定义 2 设在矩阵 A \boldsymbol{A} A 中有一个不等于 0 0 0 r r r 阶子式 D D D,且所有 r + 1 r+1 r+1 阶子式(如果存在的话)全等于 0 0 0,那么 D D D 称为矩阵 A \boldsymbol{A} A最高阶非零子式,数 r r r 称为 矩阵 A \boldsymbol{A} A 的秩,记作 R ( A ) R(\boldsymbol{A}) R(A)。并规定零矩阵的秩等于 0 0 0

A \boldsymbol{A} A 中档所有 r + 1 r+1 r+1 阶子式全等于 0 0 0 时,所有高于 r + 1 r+1 r+1 阶的子式也全等于 0 0 0,因此把 r r r 阶非零子式称为最高阶非零子式,而 A \boldsymbol{A} A 的秩 R ( A ) R(\boldsymbol{A}) R(A) 就是非零子式的最高阶数。

由于 R ( A ) R(\boldsymbol{A}) R(A) A \boldsymbol{A} A 的非零子式的最高阶数,因此,若矩阵 A \boldsymbol{A} A 中有某个 s s s 阶子式不为 0 0 0,则 R ( A ) ≥ s R(\boldsymbol{A}) \ge s R(A)s;若 A \boldsymbol{A} A 中所有 t t t 阶子式全为 0 0 0,则 R ( A ) < t R(\boldsymbol{A}) < t R(A)<t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值