定义 1 设有
n
n
n 维向量
x
=
(
x
1
x
2
⋮
x
n
)
,
y
=
(
y
1
y
2
⋮
y
n
)
\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \hspace{1em} \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
x=
x1x2⋮xn
,y=
y1y2⋮yn
令
[
x
,
y
]
=
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
[\boldsymbol{x},\boldsymbol{y}] = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n
[x,y]=x1y1+x2y2+⋯+xnyn
[
x
,
y
]
[\boldsymbol{x},\boldsymbol{y}]
[x,y] 称为向量
x
\boldsymbol{x}
x 与
y
\boldsymbol{y}
y 的 内积。
内积是两个向量之间的一种运算,其结果是一个实数,用矩阵记号表示,当
x
\boldsymbol{x}
x 与
y
\boldsymbol{y}
y 都是列向量时,有
[
x
,
y
]
=
x
T
y
[\boldsymbol{x}, \boldsymbol{y}] = \boldsymbol{x}^T \boldsymbol{y}
[x,y]=xTy
内积具有下列性质:
性质 1 [ x , y ] = [ y , x ] [\boldsymbol{x},\boldsymbol{y}] = [\boldsymbol{y},\boldsymbol{x}] [x,y]=[y,x]( x , y \boldsymbol{x},\boldsymbol{y} x,y 为 n n n 维度向量)
证明 根据定义 1,有 [ y , x ] = y 1 x 1 + y 2 x 2 + ⋯ + y n x n = x 1 y 1 + x 2 y 2 + ⋯ + x n y n = [ x , y ] [\boldsymbol{y},\boldsymbol{x}] = y_1 x_1 + y_2 x_2 + \cdots + y_n x_n = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = [\boldsymbol{x},\boldsymbol{y}] [y,x]=y1x1+y2x2+⋯+ynxn=x1y1+x2y2+⋯+xnyn=[x,y]
性质 2 [ λ x , y ] = λ [ x , y ] [\lambda \boldsymbol{x}, \boldsymbol{y}] = \lambda [\boldsymbol{x},\boldsymbol{y}] [λx,y]=λ[x,y]( x , y \boldsymbol{x},\boldsymbol{y} x,y 为 n n n 维度向量, λ \lambda λ 为实数)
证明 根据定义 1,有 [ λ x , y ] = λ x 1 y 1 + λ x 2 y 2 + ⋯ + λ x n y n = λ ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) = λ [ x , y ] [\lambda \boldsymbol{x}, \boldsymbol{y}] = \lambda x_1 y_1 + \lambda x_2 y_2 + \cdots + \lambda x_n y_n = \lambda (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n) = \lambda [\boldsymbol{x},\boldsymbol{y}] [λx,y]=λx1y1+λx2y2+⋯+λxnyn=λ(x1y1+x2y2+⋯+xnyn)=λ[x,y]
性质 3 [ x + y , z ] = [ x , z ] + [ y , z ] [\boldsymbol{x}+\boldsymbol{y},\boldsymbol{z}] = [\boldsymbol{x},\boldsymbol{z}] + [\boldsymbol{y},\boldsymbol{z}] [x+y,z]=[x,z]+[y,z]( x , y , z \boldsymbol{x},\boldsymbol{y},\boldsymbol{z} x,y,z 为 n n n 维度向量)
证明 根据定义 1,有
[ x + y , z ] = ( x 1 + y 1 ) z 1 + ( x 2 + y 2 ) z 2 + ⋯ ( x n + y n ) z n = ( x 1 z 1 + x 2 z 2 + ⋯ x n z n ) + ( y 1 z 1 + y 2 z 2 + ⋯ y n z n ) = [ x , z ] + [ y , z ] \begin{align*} [\boldsymbol{x}+\boldsymbol{y},\boldsymbol{z}] & = (x_1+y_1)z_1 + (x_2+y_2)z_2 + \cdots (x_n + y_n)z_n \\ & = (x_1 z_1 + x_2 z_2 + \cdots x_n z_n) + (y_1 z_1 + y_2 z_2 + \cdots y_n z_n) \\ & = [\boldsymbol{x},\boldsymbol{z}] + [\boldsymbol{y},\boldsymbol{z}] \end{align*} [x+y,z]=(x1+y1)z1+(x2+y2)z2+⋯(xn+yn)zn=(x1z1+x2z2+⋯xnzn)+(y1z1+y2z2+⋯ynzn)=[x,z]+[y,z]
性质 4 当 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0 时, [ x , x ] = 0 [\boldsymbol{x},\boldsymbol{x}] = 0 [x,x]=0;当 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0 时, [ x , x ] > 0 [\boldsymbol{x},\boldsymbol{x}] > 0 [x,x]>0( x \boldsymbol{x} x 为 n n n 维度向量)
证明 根据定义 1,有 [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 ≥ 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 \ge 0 [x,x]=x12+x22+⋯+xn2≥0。因此,显然有当 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0 时, [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 = 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 = 0 [x,x]=x12+x22+⋯+xn2=0;当 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0 时, [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 > 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 > 0 [x,x]=x12+x22+⋯+xn2>0。得证。
性质 5(施瓦茨不等式) [ x , y ] 2 ≤ [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 \le [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2≤[x,x][y,y]( x , y \boldsymbol{x},\boldsymbol{y} x,y 为 n n n 维度向量)
证明 根据定义 1,有
[ x , y ] 2 = ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 [ x , x ] [ y , y ] = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) \begin{align*} [\boldsymbol{x},\boldsymbol{y}]^2 & = (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n)^2 \\ [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] & = (x_1^2 + x_2^2 + \cdots + x_n^2) (y_1^2 + y_2^2 + \cdots + y_n^2) \end{align*} [x,y]2[x,x][y,y]=(x1y1+x2y2+⋯+xnyn)2=(x12+x22+⋯+xn2)(y12+y22+⋯+yn2)
如果 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0:显然有 [ x , y ] 2 = [ x , x ] [ y , y ] = 0 [\boldsymbol{x},\boldsymbol{y}]^2 = [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] = 0 [x,y]2=[x,x][y,y]=0,满足不等式。如果 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0:因为根据性质 4,有 [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 > 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 > 0 [x,x]=x12+x22+⋯+xn2>0,所以,可以构造二次函数
f ( t ) = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) t 2 + 2 ( x 1 y 1 + x 2 y 2 + ⋯ x n y n ) t + ( y 1 2 + y 2 2 + ⋯ + y n 2 ) = ( x 1 2 t 2 + 2 x 1 y 1 t + y 1 2 ) + ( x 2 2 t 2 + 2 x 2 y 2 t + y 2 2 ) + ⋯ + ( x n 2 t 2 + 2 x n y n t + y n 2 ) = ( x 1 t + y 1 ) 2 + ( x 2 t + y 2 ) 2 + ⋯ + ( x n t + y n ) 2 \begin{align*} f(t) & = (x_1^2 + x_2^2 + \cdots + x_n^2) t^2 + 2 (x_1 y_1 + x_2 y_2 + \cdots x_n y_n) t + (y_1^2 + y_2^2 + \cdots + y_n^2) \\ & = (x_1^2 t^2 + 2 x_1 y_1 t + y_1^2) + (x_2^2 t^2 + 2 x_2 y_2 t + y_2^2) + \cdots + (x_n^2 t^2 + 2 x_n y_n t + y_n^2 ) \\ & = (x_1 t + y_1)^2 + (x_2 t + y_2)^2 + \cdots + (x_n t + y_n)^2 \end{align*} f(t)=(x12+x22+⋯+xn2)t2+2(x1y1+x2y2+⋯xnyn)t+(y12+y22+⋯+yn2)=(x12t2+2x1y1t+y12)+(x22t2+2x2y2t+y22)+⋯+(xn2t2+2xnynt+yn2)=(x1t+y1)2+(x2t+y2)2+⋯+(xnt+yn)2
因为对于任意 t ∈ R t \in R t∈R,都有 f ( t ) ≥ 0 f(t) \ge 0 f(t)≥0,所以 f ( t ) = 0 f(t) = 0 f(t)=0 无解,进而 f ( t ) f(t) f(t) 的判别式应该小于 0 0 0,于是有
Δ = [ 2 ( x 1 y 1 + x 2 y 2 + ⋯ x n y n ) ] 2 − 4 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) < 0 \Delta = [2 (x_1 y_1 + x_2 y_2 + \cdots x_n y_n)]^2 - 4 (x_1^2 + x_2^2 + \cdots + x_n^2) (y_1^2 + y_2^2 + \cdots + y_n^2) < 0 Δ=[2(x1y1+x2y2+⋯xnyn)]2−4(x12+x22+⋯+xn2)(y12+y22+⋯+yn2)<0
即
[ x , y ] 2 = ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 < ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) = [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 = (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n)^2 < (x_1^2 + x_2^2 + \cdots + x_n^2) (y_1^2 + y_2^2 + \cdots + y_n^2) = [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2=(x1y1+x2y2+⋯+xnyn)2<(x12+x22+⋯+xn2)(y12+y22+⋯+yn2)=[x,x][y,y]
综上所述,当 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0 时, [ x , y ] 2 = [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 = [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2=[x,x][y,y];当 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0 时 [ x , y ] 2 < [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 < [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2<[x,x][y,y]。得证。