线性代数|向量内积的性质及施瓦茨不等式的证明

本文详细介绍了向量内积的定义及基本性质,并通过数学公式推导了这些性质的有效性,包括内积的对称性、线性、正定性和施瓦茨不等式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 1 设有 n n n 维向量
x = ( x 1 x 2 ⋮ x n ) , y = ( y 1 y 2 ⋮ y n ) \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \hspace{1em} \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} x= x1x2xn ,y= y1y2yn

[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [\boldsymbol{x},\boldsymbol{y}] = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n [x,y]=x1y1+x2y2++xnyn
[ x , y ] [\boldsymbol{x},\boldsymbol{y}] [x,y] 称为向量 x \boldsymbol{x} x y \boldsymbol{y} y内积

内积是两个向量之间的一种运算,其结果是一个实数,用矩阵记号表示,当 x \boldsymbol{x} x y \boldsymbol{y} y 都是列向量时,有
[ x , y ] = x T y [\boldsymbol{x}, \boldsymbol{y}] = \boldsymbol{x}^T \boldsymbol{y} [x,y]=xTy
内积具有下列性质:

性质 1  [ x , y ] = [ y , x ] [\boldsymbol{x},\boldsymbol{y}] = [\boldsymbol{y},\boldsymbol{x}] [x,y]=[y,x] x , y \boldsymbol{x},\boldsymbol{y} x,y n n n 维度向量)

证明 根据定义 1,有 [ y , x ] = y 1 x 1 + y 2 x 2 + ⋯ + y n x n = x 1 y 1 + x 2 y 2 + ⋯ + x n y n = [ x , y ] [\boldsymbol{y},\boldsymbol{x}] = y_1 x_1 + y_2 x_2 + \cdots + y_n x_n = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = [\boldsymbol{x},\boldsymbol{y}] [y,x]=y1x1+y2x2++ynxn=x1y1+x2y2++xnyn=[x,y]

性质 2  [ λ x , y ] = λ [ x , y ] [\lambda \boldsymbol{x}, \boldsymbol{y}] = \lambda [\boldsymbol{x},\boldsymbol{y}] [λx,y]=λ[x,y] x , y \boldsymbol{x},\boldsymbol{y} x,y n n n 维度向量, λ \lambda λ 为实数)

证明 根据定义 1,有 [ λ x , y ] = λ x 1 y 1 + λ x 2 y 2 + ⋯ + λ x n y n = λ ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) = λ [ x , y ] [\lambda \boldsymbol{x}, \boldsymbol{y}] = \lambda x_1 y_1 + \lambda x_2 y_2 + \cdots + \lambda x_n y_n = \lambda (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n) = \lambda [\boldsymbol{x},\boldsymbol{y}] [λx,y]=λx1y1+λx2y2++λxnyn=λ(x1y1+x2y2++xnyn)=λ[x,y]

性质 3  [ x + y , z ] = [ x , z ] + [ y , z ] [\boldsymbol{x}+\boldsymbol{y},\boldsymbol{z}] = [\boldsymbol{x},\boldsymbol{z}] + [\boldsymbol{y},\boldsymbol{z}] [x+y,z]=[x,z]+[y,z] x , y , z \boldsymbol{x},\boldsymbol{y},\boldsymbol{z} x,y,z n n n 维度向量)

证明 根据定义 1,有
[ x + y , z ] = ( x 1 + y 1 ) z 1 + ( x 2 + y 2 ) z 2 + ⋯ ( x n + y n ) z n = ( x 1 z 1 + x 2 z 2 + ⋯ x n z n ) + ( y 1 z 1 + y 2 z 2 + ⋯ y n z n ) = [ x , z ] + [ y , z ] \begin{align*} [\boldsymbol{x}+\boldsymbol{y},\boldsymbol{z}] & = (x_1+y_1)z_1 + (x_2+y_2)z_2 + \cdots (x_n + y_n)z_n \\ & = (x_1 z_1 + x_2 z_2 + \cdots x_n z_n) + (y_1 z_1 + y_2 z_2 + \cdots y_n z_n) \\ & = [\boldsymbol{x},\boldsymbol{z}] + [\boldsymbol{y},\boldsymbol{z}] \end{align*} [x+y,z]=(x1+y1)z1+(x2+y2)z2+(xn+yn)zn=(x1z1+x2z2+xnzn)+(y1z1+y2z2+ynzn)=[x,z]+[y,z]

性质 4 当 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0 时, [ x , x ] = 0 [\boldsymbol{x},\boldsymbol{x}] = 0 [x,x]=0;当 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0 时, [ x , x ] > 0 [\boldsymbol{x},\boldsymbol{x}] > 0 [x,x]>0 x \boldsymbol{x} x n n n 维度向量)

证明 根据定义 1,有 [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 ≥ 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 \ge 0 [x,x]=x12+x22++xn20。因此,显然有当 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0 时, [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 = 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 = 0 [x,x]=x12+x22++xn2=0;当 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0 时, [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 > 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 > 0 [x,x]=x12+x22++xn2>0。得证。

性质 5(施瓦茨不等式)  [ x , y ] 2 ≤ [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 \le [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2[x,x][y,y] x , y \boldsymbol{x},\boldsymbol{y} x,y n n n 维度向量)

证明 根据定义 1,有
[ x , y ] 2 = ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 [ x , x ] [ y , y ] = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) \begin{align*} [\boldsymbol{x},\boldsymbol{y}]^2 & = (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n)^2 \\ [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] & = (x_1^2 + x_2^2 + \cdots + x_n^2) (y_1^2 + y_2^2 + \cdots + y_n^2) \end{align*} [x,y]2[x,x][y,y]=(x1y1+x2y2++xnyn)2=(x12+x22++xn2)(y12+y22++yn2)
如果 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0:显然有 [ x , y ] 2 = [ x , x ] [ y , y ] = 0 [\boldsymbol{x},\boldsymbol{y}]^2 = [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] = 0 [x,y]2=[x,x][y,y]=0,满足不等式。

如果 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0:因为根据性质 4,有 [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 > 0 [\boldsymbol{x},\boldsymbol{x}] = x_1^2 + x_2^2 + \cdots + x_n^2 > 0 [x,x]=x12+x22++xn2>0,所以,可以构造二次函数
f ( t ) = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) t 2 + 2 ( x 1 y 1 + x 2 y 2 + ⋯ x n y n ) t + ( y 1 2 + y 2 2 + ⋯ + y n 2 ) = ( x 1 2 t 2 + 2 x 1 y 1 t + y 1 2 ) + ( x 2 2 t 2 + 2 x 2 y 2 t + y 2 2 ) + ⋯ + ( x n 2 t 2 + 2 x n y n t + y n 2 ) = ( x 1 t + y 1 ) 2 + ( x 2 t + y 2 ) 2 + ⋯ + ( x n t + y n ) 2 \begin{align*} f(t) & = (x_1^2 + x_2^2 + \cdots + x_n^2) t^2 + 2 (x_1 y_1 + x_2 y_2 + \cdots x_n y_n) t + (y_1^2 + y_2^2 + \cdots + y_n^2) \\ & = (x_1^2 t^2 + 2 x_1 y_1 t + y_1^2) + (x_2^2 t^2 + 2 x_2 y_2 t + y_2^2) + \cdots + (x_n^2 t^2 + 2 x_n y_n t + y_n^2 ) \\ & = (x_1 t + y_1)^2 + (x_2 t + y_2)^2 + \cdots + (x_n t + y_n)^2 \end{align*} f(t)=(x12+x22++xn2)t2+2(x1y1+x2y2+xnyn)t+(y12+y22++yn2)=(x12t2+2x1y1t+y12)+(x22t2+2x2y2t+y22)++(xn2t2+2xnynt+yn2)=(x1t+y1)2+(x2t+y2)2++(xnt+yn)2
因为对于任意 t ∈ R t \in R tR,都有 f ( t ) ≥ 0 f(t) \ge 0 f(t)0,所以 f ( t ) = 0 f(t) = 0 f(t)=0 无解,进而 f ( t ) f(t) f(t) 的判别式应该小于 0 0 0,于是有
Δ = [ 2 ( x 1 y 1 + x 2 y 2 + ⋯ x n y n ) ] 2 − 4 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) < 0 \Delta = [2 (x_1 y_1 + x_2 y_2 + \cdots x_n y_n)]^2 - 4 (x_1^2 + x_2^2 + \cdots + x_n^2) (y_1^2 + y_2^2 + \cdots + y_n^2) < 0 Δ=[2(x1y1+x2y2+xnyn)]24(x12+x22++xn2)(y12+y22++yn2)<0

[ x , y ] 2 = ( x 1 y 1 + x 2 y 2 + ⋯ + x n y n ) 2 < ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ( y 1 2 + y 2 2 + ⋯ + y n 2 ) = [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 = (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n)^2 < (x_1^2 + x_2^2 + \cdots + x_n^2) (y_1^2 + y_2^2 + \cdots + y_n^2) = [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2=(x1y1+x2y2++xnyn)2<(x12+x22++xn2)(y12+y22++yn2)=[x,x][y,y]
综上所述,当 x = 0 \boldsymbol{x} = \boldsymbol{0} x=0 时, [ x , y ] 2 = [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 = [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2=[x,x][y,y];当 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0 [ x , y ] 2 < [ x , x ] [ y , y ] [\boldsymbol{x},\boldsymbol{y}]^2 < [\boldsymbol{x},\boldsymbol{x}] [\boldsymbol{y},\boldsymbol{y}] [x,y]2<[x,x][y,y]。得证。

### 柯西-施瓦茨不等式的数学概念 柯西-施瓦茨不等式是一个重要的数学工具,在线性代数、泛函分析以及概率论等领域都有广泛应用。该不等式表明,对于任意两个向量 \( u \) 和 \( v \),它们的内积绝对值不会超过这两个向量范数乘积的大小[^1]。 具体来说,如果在一个实或复内积空间中定义了内积,则有如下关系成立: \[ |\langle u, v \rangle| \leq \|u\| \cdot \|v\| \] 其中: - \( \langle u, v \rangle \) 表示向量 \( u \) 和 \( v \) 的内积, - \( \|u\| = \sqrt{\langle u, u \rangle} \) 是向量 \( u \) 的范数。 当且仅当 \( u \) 和 \( v \) 线性相关时(即其中一个可以表示为另一个的常数倍),上述不等式中的等号才成立[^2]。 #### 对于积分形式的应用 在函数空间中,柯西-施瓦茨不等式同样适用。假设 \( f(x) \) 和 \( g(x) \) 是定义在同一区间上的可积函数,则存在以下关系: \[ \left( \int_a^b |f(x)g(x)| dx \right)^2 \leq \left( \int_a^b |f(x)|^2 dx \right) \left( \int_a^b |g(x)|^2 dx \right) \] 这一版本特别适用于处理连续变量的情况,并且可以通过将离散求和推广到积分来理解其本质[^3]。 #### 几何意义与应用扩展 除了基本的形式外,柯西-施瓦茨不等式还与其他重要不等式密切相关,比如闵科夫斯基不等式 (Minkowski inequality) 和杨氏不等式 (Young's inequality)。它不仅限定了两矢量间夹角余弦的最大可能值,还在证明其他更复杂的定理过程中起到基础作用[^4]。 ```python import numpy as np def cauchy_schwarz_inequality(u, v): inner_product = abs(np.dot(u, v)) norm_u = np.linalg.norm(u) norm_v = np.linalg.norm(v) return inner_product <= norm_u * norm_v # Example usage: vector_u = np.array([1, 2, 3]) vector_v = np.array([-1, 0, 1]) result = cauchy_schwarz_inequality(vector_u, vector_v) print(f"Does the Cauchy-Schwarz inequality hold? {result}") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值