向量的内积

向量的内积(也称为点积或数量积)是一种在两个向量之间定义的运算,用来计算两个向量的相似程度或者它们之间的角度关系。给定两个向量 u \mathbf{u} u v \mathbf{v} v,它们在 n n n 维空间中的内积定义为:

u ⋅ v = u 1 v 1 + u 2 v 2 + … + u n v n \mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + \ldots + u_nv_n uv=u1v1+u2v2++unvn
这里, u i u_i ui v i v_i vi分别是向量 u \mathbf{u} u v \mathbf{v} v 在第 i i i 维的分量。内积的结果是一个标量(一个数),而不是向量。

举例说明

假设有两个三维空间中的向量 u = ( 1 , 2 , 3 ) \mathbf{u} = (1, 2, 3) u=(1,2,3) v = ( 4 , − 5 , 6 ) \mathbf{v} = (4, -5, 6) v=(4,5,6),它们的内积计算如下:

u ⋅ v = ( 1 ) ( 4 ) + ( 2 ) ( − 5 ) + ( 3 ) ( 6 ) = 4 − 10 + 18 = 12 \mathbf{u} \cdot \mathbf{v} = (1)(4) + (2)(-5) + (3)(6) = 4 - 10 + 18 = 12 uv=(1)(4)+(2)(5)+(3)(6)=410+18=12

几何意义

向量内积的几何意义包括:

  • 角度关系:两个向量的内积与它们之间角度的余弦值成正比。特别地,如果 u ⋅ v = 0 \mathbf{u} \cdot \mathbf{v} = 0 uv=0,则这两个向量正交(相互垂直)。
  • 投影:一个向量在另一个向量方向上的投影可以通过内积计算得到。

向量内积的几何意义主要体现在角度关系和投影两个方面。我们可以通过具体的例子来详细说明这两个几何意义。

1. 角度关系

向量内积可以用来计算两个向量之间的角度。公式是:

u ⋅ v = ∥ u ∥ ∥ v ∥ cos ⁡ ( θ ) \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta) uv=u∥∥vcos(θ)

这里的 θ \theta θ 是向量 u \mathbf{u} u 和向量 v \mathbf{v} v 之间的夹角, ∥ u ∥ \|\mathbf{u}\| u ∥ v ∥ \|\mathbf{v}\| v 分别是向量的模长。

例子:假设向量 a = ( 1 , 0 ) \mathbf{a} = (1, 0) a=(1,0) 和向量 b = ( 0 , 1 ) \mathbf{b} = (0, 1) b=(0,1)在二维空间中。它们的内积计算为:

a ⋅ b = ( 1 ) ( 0 ) + ( 0 ) ( 1 ) = 0 \mathbf{a} \cdot \mathbf{b} = (1)(0) + (0)(1) = 0 ab=(1)(0)+(0)(1)=0

由于 a ⋅ b = 0 \mathbf{a} \cdot \mathbf{b} = 0 ab=0,这意味着 cos ⁡ ( θ ) = 0 \cos(\theta) = 0 cos(θ)=0,从而 θ = 9 0 ∘ \theta = 90^\circ θ=90。这表明向量 a \mathbf{a} a b \mathbf{b} b 垂直。

2. 投影

向量的内积可以用来计算一个向量在另一个向量方向上的投影长度。这个长度是:

proj u v = u ⋅ v ∥ u ∥ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|} projuv=uuv

例子:考虑向量 u = ( 3 , 4 ) \mathbf{u} = (3, 4) u=(3,4) 和向量 v = ( 1 , 2 ) \mathbf{v} = (1, 2) v=(1,2)。首先,我们计算 u \mathbf{u} u 的模长:

∥ u ∥ = 3 2 + 4 2 = 5 \|\mathbf{u}\| = \sqrt{3^2 + 4^2} = 5 u=32+42 =5

计算它们的内积:

u ⋅ v = ( 3 ) ( 1 ) + ( 4 ) ( 2 ) = 3 + 8 = 11 \mathbf{u} \cdot \mathbf{v} = (3)(1) + (4)(2) = 3 + 8 = 11 uv=(3)(1)+(4)(2)=3+8=11

因此, v \mathbf{v} v u \mathbf{u} u 上的投影长度是:

proj u v = 11 5 = 2.2 \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{11}{5} = 2.2 projuv=511=2.2

这意味着向量 v \mathbf{v} v u \mathbf{u} u 方向上的投影的长度是 2.2。这个投影本身是一个向量,可以表示为:

proj vector u v = u ⋅ v ∥ u ∥ 2 u = 11 25 ( 3 , 4 ) \text{proj vector}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2} \mathbf{u} = \frac{11}{25} (3, 4) proj vectoruv=u2uvu=2511(3,4)

这些计算显示了如何使用内积来度量和表达向量之间的几何关系,无论是角度还是投影。这些概念在几何、物理学、工程学以及数据分析和机器学习中都有广泛的应用。

应用

向量的内积在多个领域有广泛应用,包括物理学中的力和位移计算、计算机科学中的搜索引擎算法、机器学习中的相似度测量等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值