如何证明内积公式

懒得打字了,直接贴图上来。其实还有别的方法,但是我觉得没有我这个简单快速直观。下面是问题描述:


问题

在一个2维赋范线性空间中,给定一个直角坐标系,两个向量 a \bold{a} a, b \bold{b} b,坐标分别为 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2)

定义内积操作 a ⋅ b = x 1 x 2 + y 1 y 2 \bold{a} \cdot \bold{b}= x_1x_2+y_1y_2 ab=x1x2+y1y2

证明: a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \bold{a} \cdot \bold{b}= |\bold{a}||\bold{b}|\cos\theta ab=a∣∣bcosθ, θ \theta θ是两个向量的夹角。

在这里插入图片描述

证明

只需要旋转一下坐标系,重新算一下两个向量的坐标值,那么利用内积定义,即可证明出:

在这里插入图片描述
旋转以后,显然,利用三角函数定理,可以看出,新的向量 a ′ \bold{a}^{'} a, b ′ \bold{b}^{'} b,坐标分别为 ( ∣ a ∣ cos ⁡ θ , a sin ⁡ θ ) (|\bold{a}|\cos\theta,\bold{a}\sin\theta) (acosθ,asinθ) ( ∣ b ∣ , 0 ) (|\bold{b}|, 0) (b,0)。因为旋转以后内积不变(证明见文章末尾),再利用内积定义,即可得出。

题外话

这里有几个知识点:

线性空间,向量空间,内积,长度,距离,坐标系,坐标系旋转,基,赋范线性空间,内积,相似性。

这些都是基础知识,除了熟练掌握,要深刻理解起来,并非易事。

最近在研究双曲空间,发现不容易理解透。对于计算机选手,非数学系的,如果讨论的空间变得复杂了,比如双曲空间中,很容易就迷失了方向。所以还是得从基础构建起来。

* 请问“旋转后内积不变”又以什么为依据来证明呢?

感谢 “vcfanwxf” 评论问了一个好问题:

  • 请问“旋转后内积不变”又以什么为依据来证明呢?

回答:

这里依据的是正交基旋转的简单计算:假设旋转矩阵为 R R R a ′ , b ′ a', b' a,b 为旋转后对应向量 a , b a,b ab的新向量,那么: a ′ = R a , b ′ = R b a'=Ra,b'=Rb a=Rab=Rb。再根据题目里内积的定义,可以写成矩阵的形式:
a ′ ⋅ b ′ = a ′ T b ′ = ( R a ) T R b = a T R T R b = a T I b = a T b = a ⋅ b a' \cdot b'=a'^Tb'=(Ra)^TRb=a^TR^TRb=a^TIb=a^Tb=a\cdot b ab=aTb=(Ra)TRb=aTRTRb=aTIb=aTb=ab
这里 I I I就是identiy matrix,直角坐标系中,旋转矩阵 R R R是正交的,故 R T R = I R^TR=I RTR=I,(证明: R T = R − 1 R^T=R^{-1} RT=R1, 留给你们当课后习题)

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值