线性代数|证明:二次型正定的充要条件是特征值全为正

前置定理 1 任给二次型 f = ∑ i , j = 1 n a i j x i x j   ( a i j = a j i ) f = \sum_{i,j=1}^n a_{ij} x_i x_j \ (a_{ij} = a_{ji}) f=i,j=1naijxixj (aij=aji),总有正交变换 x = P y \boldsymbol{x} = \boldsymbol{P} \boldsymbol{y} x=Py,使 f f f 化为标准形
f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ λ n y n 2 f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots \lambda_n y_n^2 f=λ1y12+λ2y22+λnyn2
其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn f f f 的矩阵 A = ( a i j ) \boldsymbol{A} = (a_{ij}) A=(aij) 的特征值。

证明见 “二次型及其标准形”。


定理 1  n n n 元二次型 f = x T A x f = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} f=xTAx 为正定的充分必要条件是:它的标准形的 n n n 个系数全为正,即它的规范形的 n n n 个系数全为 1 1 1,亦即它的正惯性指数等于 n n n

证明 设可逆矩阵 x = C y \boldsymbol{x} = \boldsymbol{C} \boldsymbol{y} x=Cy 使
f ( x ) = f ( C y ) = ∑ i = 1 n k i y i 2 f(\boldsymbol{x}) = f(\boldsymbol{C} \boldsymbol{y}) = \sum_{i=1}^n k_i y_i^2 f(x)=f(Cy)=i=1nkiyi2
先证充分性。设 k i > 0   ( i = 1 , ⋯   , n ) k_i > 0 \ (i=1,\cdots,n) ki>0 (i=1,,n)。任给 x ≠ 0 \boldsymbol{x} \ne \boldsymbol{0} x=0,则 y = C − 1 x ≠ 0 \boldsymbol{y} = \boldsymbol{C}^{-1} \boldsymbol{x} \ne \boldsymbol{0} y=C1x=0,故
f ( x ) = ∑ i = 1 n k i y i 2 > 0 f(\boldsymbol{x}) = \sum_{i=1}^n k_i y_i^2 > 0 f(x)=i=1nkiyi2>0
再证必要性。用反证法。假设有 k s ≤ 0 k_s \le 0 ks0,则当 y = e s \boldsymbol{y} = \boldsymbol{e}_s y=es(单位坐标向量)时, f ( C e s ) = k s ≤ 0 f(\boldsymbol{C} \boldsymbol{e}_s) = k_s \le 0 f(Ces)=ks0。显然 C e s ≠ 0 \boldsymbol{C} \boldsymbol{e}_s \ne \boldsymbol{0} Ces=0,这与 f f f 为正定相矛盾。这就证明了 k i > 0   ( i = 1 , ⋯   , n ) k_i > 0 \ (i=1,\cdots,n) ki>0 (i=1,,n)

推论 对称矩阵 A \boldsymbol{A} A 为正定的充分必要条件是: A \boldsymbol{A} A 的特征值全为正。

证明 根据定理 1 和前置定理 1,显然推论成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值