高维数据检索:PQ(积量化)算法

在大 AI 时代,高维数据的处理与检索一直是一项重要的技术需求。面对高维数据的海量增加,传统的数据处理方法往往无法应对存储和计算开销的挑战。PQ(积量化)算法以其高效性受到广泛关注,旨在通过量化技术对数据进行压缩,并提高近似搜索的效率。本文将深入探讨 PQ 算法的基本原理,包括量化与码本的构建、维度灾难与内存开销的分析,以及积量化的创新与应用。

在这里插入图片描述

PQ 算法

PQ 算法概述

PQ 算法的核心思想是对高维向量进行量化处理。具体而言,PQ 算法首先将高维向量划分为多个低维子向量(称为子空间),并对各个子向量进行量化。在这一过程中,每个子向量可以被视为与其对应的质心相近的代表,其实质是在信息量损失可接受的范围内,实现高效压缩。

量化过程

量化过程的关键在于如何选择质心并构建码本。一般使用 K-means 聚类算法来确定质心。每个子空间中的向量都归类到其最近的质心,并将该质心的索引作为代表。例如,假设我们有以下四个向量:

  • [ 0.1 , 0.5 ] [0.1, 0.5] [0.1,0.5]
  • [ 0.2 , 0.6 ] [0.2, 0.6] [0.2,0.6]
  • [ 0.9 , 0.8 ] [0.9, 0.8] [0.9,0.8]
  • [ 0.95 , 0.9 ] [0.95, 0.9] [0.95,0.9]

使用 K-means 聚类算法将其聚成两类:

  • 类 1: [ 0.1 , 0.5 ] [0.1, 0.5] [0.1,0.5], [ 0.2 , 0.6 ] [0.2, 0.6] [0.2,0.6]
  • 类 2: [ 0.9 , 0.8 ] [0.9, 0.8] [0.9,0.8], [ 0.95 , 0.9 ] [0.95, 0.9] [0.95,0.9]

其质心为:

  • 质心 1: [ 0.15 , 0.55 ] [0.15, 0.55] [0.15,0.55]
  • 质心 2: [ 0.925 , 0.85 ] [0.925, 0.85] [0.925,0.85]

每个向量用其质心的索引表示:

  • 向量 1 和 2 使用索引 0(质心 1)
  • 向量 3 和 4 使用索引 1(质心 2)

码本构建

码本就是保存所有质心的集合。它允许通过索引快速查找相应的质心。在我们的例子中,码本为:

  • 索引 0: [ 0.15 , 0.55 ] [0.15, 0.55] [0.15,0.55]
  • 索引 1: [ 0.925 , 0.85 ] [0.925, 0.85] [0.925,0.85]

模拟数据推演

以下是一个简单的 Python 代码示例,展示 PQ 算法的量化过程:

import numpy as np
from sklearn.cluster import KMeans

# 示例数据
data = np.array([[0.1, 0.5], [0.2, 0.6], [0.9, 0.8], [0.95, 0.9]])

# K-means聚类
kmeans = KMeans(n_clusters=2)
kmeans.fit(data)

# 打印质心和标签
print("质心:", kmeans.cluster_centers_)
print("标签:", kmeans.labels_)

维度灾难与内存开销

维度灾难问题

“维度灾难”指的是随着数据维度的增加,数据的分布变得极为稀疏,若需保障质心足以代表聚类的数据点,质心的数量(聚类数)将急剧膨胀,这将导致计算效率和有效性大幅下降。在进行聚类与质心替换时,维度灾难会对计算的精确度,聚类的质量造成负面影响,计算与存储成本也会陡增。在这种情况下,PQ 算法通过将高维向量分解为低维子向量来对抗这一问题。

过程推演

假设我们有一组 1 维、2 维、128 维的向量数据,我们逐步增加维度,观察数据的稀疏性变化及其对质心替换的影响。

考虑一组简单的 1 维数据:

data_1d = np.array([[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三余知行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值