文章目录
在大 AI 时代,高维数据的处理与检索一直是一项重要的技术需求。面对高维数据的海量增加,传统的数据处理方法往往无法应对存储和计算开销的挑战。PQ(积量化)算法以其高效性受到广泛关注,旨在通过量化技术对数据进行压缩,并提高近似搜索的效率。本文将深入探讨 PQ 算法的基本原理,包括量化与码本的构建、维度灾难与内存开销的分析,以及积量化的创新与应用。
PQ 算法
PQ 算法概述
PQ 算法的核心思想是对高维向量进行量化处理。具体而言,PQ 算法首先将高维向量划分为多个低维子向量(称为子空间),并对各个子向量进行量化。在这一过程中,每个子向量可以被视为与其对应的质心相近的代表,其实质是在信息量损失可接受的范围内,实现高效压缩。
量化过程
量化过程的关键在于如何选择质心并构建码本。一般使用 K-means 聚类算法来确定质心。每个子空间中的向量都归类到其最近的质心,并将该质心的索引作为代表。例如,假设我们有以下四个向量:
- [ 0.1 , 0.5 ] [0.1, 0.5] [0.1,0.5]
- [ 0.2 , 0.6 ] [0.2, 0.6] [0.2,0.6]
- [ 0.9 , 0.8 ] [0.9, 0.8] [0.9,0.8]
- [ 0.95 , 0.9 ] [0.95, 0.9] [0.95,0.9]
使用 K-means 聚类算法将其聚成两类:
- 类 1: [ 0.1 , 0.5 ] [0.1, 0.5] [0.1,0.5], [ 0.2 , 0.6 ] [0.2, 0.6] [0.2,0.6]
- 类 2: [ 0.9 , 0.8 ] [0.9, 0.8] [0.9,0.8], [ 0.95 , 0.9 ] [0.95, 0.9] [0.95,0.9]
其质心为:
- 质心 1: [ 0.15 , 0.55 ] [0.15, 0.55] [0.15,0.55]
- 质心 2: [ 0.925 , 0.85 ] [0.925, 0.85] [0.925,0.85]
每个向量用其质心的索引表示:
- 向量 1 和 2 使用索引 0(质心 1)
- 向量 3 和 4 使用索引 1(质心 2)
码本构建
码本就是保存所有质心的集合。它允许通过索引快速查找相应的质心。在我们的例子中,码本为:
- 索引 0: [ 0.15 , 0.55 ] [0.15, 0.55] [0.15,0.55]
- 索引 1: [ 0.925 , 0.85 ] [0.925, 0.85] [0.925,0.85]
模拟数据推演
以下是一个简单的 Python 代码示例,展示 PQ 算法的量化过程:
import numpy as np
from sklearn.cluster import KMeans
# 示例数据
data = np.array([[0.1, 0.5], [0.2, 0.6], [0.9, 0.8], [0.95, 0.9]])
# K-means聚类
kmeans = KMeans(n_clusters=2)
kmeans.fit(data)
# 打印质心和标签
print("质心:", kmeans.cluster_centers_)
print("标签:", kmeans.labels_)
维度灾难与内存开销
维度灾难问题
“维度灾难”指的是随着数据维度的增加,数据的分布变得极为稀疏,若需保障质心足以代表聚类的数据点,质心的数量(聚类数)将急剧膨胀,这将导致计算效率和有效性大幅下降。在进行聚类与质心替换时,维度灾难会对计算的精确度,聚类的质量造成负面影响,计算与存储成本也会陡增。在这种情况下,PQ 算法通过将高维向量分解为低维子向量来对抗这一问题。
过程推演
假设我们有一组 1 维、2 维、128 维的向量数据,我们逐步增加维度,观察数据的稀疏性变化及其对质心替换的影响。
考虑一组简单的 1 维数据:
data_1d = np.array([[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [