IHS遥感图像融合算法及其相关的算法

前言

在遥感图像融合领域,说到已经投入到商业运用,并且其变种还十分多的融合算法,恐怕IHS算法要算其中之一了。对于初学者,比如我,也经常在论文中看到IHS及其变种的身影。故在此就目前自己对IHS算法的了解做个笔记。

IHS算法简介

IHS即是Intensity–Hue–Saturation的缩写,同我们熟知的RGB一样,也是一种颜色空间。3者的意思为,强度,色调,饱和度。通常IHS算法只对强度分量I进行操作,而无关其他2个分量。确切地说,进行IHS变换之后,强度分量I只包含图像的结构信息而去除了其他的信息,剔除掉的信息主要是颜色信息。而IHS所属的成分替代方法假设Pan图所包含的结构同强度分量I是一样的,所以实践中能够使用Pan图直接替换强度分量I得到融合结果。
那么如何计算强度分量I呢?由于IHS算法假设(assumption)强度分量I是多光谱图像(MS)各波段的线性组合,所以我们可以使用低分辨MS(LRM)图像各波段的线性组合得到强度分量I。虽然根据光谱响应函数来看,即使Pan图与多光谱各波段存在某种关系,也绝对不是线性的。换句话说,假设强度分量I是多光谱各波段的线性组合是不精确的,但是由于其在建模和求解上更易实现,而且效果也不错,所以仍不失为一种解决问题的方法。其特点是计算效率很快,融合结果的空间分辨率好,但是光谱失真(color distortion)严重。部分原因可在【2006】《A New Intensity Hue-Saturation Fusion Approach to Image Fusion With a Tradeoff Parameter》一文中找到,Choi指出:IHS算法的光谱失真严重主要是因为Pan和强度分量I之间差异过大,所以通过 m i n I n e w { ∣ P a n − I n e w ∣ 2 + ∣ I n e w − I ∣ 2 } min_{I_{new}}\{|Pan-I_{new}|^2+|I_{new}-I|^2\} minInew{ PanInew2+InewI2}获得一个新的强度分量。其结果就是在光谱保持和空间细节注入方面取得权衡。当 I n e w I_{new} Inew更加逼近Pan时,融合结果的空间分辨率更高,当然光谱失真就愈严重。而当 I n e w I_{new} Inew更逼近I时,则融合结果的光谱保持更好,但是空间分辨率便不理想。需要注意的是,原始的IHS算法只适用于RGB3个通道的图像,后来有很多IHS的扩展算法将其扩展到4通道乃至n通道。最一般的确定n通道MS图像对应的强度分量的I的公式如下。 I = ∑ i = 1 N α i M i ( 1 ) I=∑_{i=1}^{N}α_{i}M_{i} (1) I=i=1NαiMi(1)
其中 α i α_{i} αi表示各波段的系数, M i M_{i} Mi表示上采样的LRM,N表示MS的通道总数。通常我们都取 α i = 1 N α_{i}=\frac{1}{N} αi=N1 。当然也有更加精确的确定I的公式,比如choi在【2006】年发表的《A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter》中指出强度分量I等于 I = 1 3 ( 0.3 ∗ R + 0.75 ∗ G + 0.25 ∗ B + 1.7 ∗ N I R ) I=\frac{1}{3}(0.3*R+0.75*G+0.25*B+1.7*NIR) I=31(0.3R+0.75G+0.25B+1.7NIR);而Tu在[2004]《A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery》[FIHS模型]一文中指出IKONOS中的强度分量I为 I = 1 3 ( R + 0.75 ∗ G + 0.25 ∗ B + N I R ) I=\frac{1}{3}(R+0.75*G+0.25*B+NIR)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值