贝叶斯网络(概率图模型)

本文深入探讨了概率图模型中的贝叶斯网络,详细解释了贝叶斯网络的有向无环图结构,并通过乘法法则和链式法则,分析了tail-tail、head-tail及head-head三种结构下的变量独立性,揭示了在不同条件下的变量关系。
摘要由CSDN通过智能技术生成

概率图模型分为贝叶斯网络和马尔可夫两大类。其中贝叶斯网络是一个有向无环图结构,而马尔可夫是一个无向图结构。本文只讲解贝叶斯网络,马尔可夫会在后面的博客进行讲解。

在开始之前需要复习下概率论的一些公式:

乘法法则:P(x_{1},x_{2}) = P(x_{1}|x_{2})P(x_{2})=P(x_{2}|x_{1})P(x_{1})

 

链式法则:P(x_{1},x_{2},...,x_{n})= \prod_{i=1}^{n}P(x_{i}|x_{1},x_{2},...,x_{i-1})

放个例子帮助理解链式法则,当n=4时,上面的例子为:

P(x_{1},x_{2},x_{3},x_{4})=P(x_{1})P(x_{2}|x_{1})P(x_{3}|x_{1},x_{2})P(x_{4}|x_{1},x_{2},x_{3})

证明,根据乘法法则有:

P(x_{1},x_{2},x_{3},x_{4})=P(x_{4}|x_{1},x_{2},x_{3})P(x_{1},x_{2},x_{3})

P(x_{1},x_{2},x_{3})=P(x_{3}|x_{1},x_{2})P(x_{1},x_{2})

P(x_{1},x_{2}) = P(x_{2}|x_{1})P(x_{1})

所以由上面3个式子,可推出:

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值