激光条纹中心提取——骨架提取法

本文详细介绍了使用OpenCV进行激光条纹中心提取的算法,包括二值化、去除小面积区域、骨架化等步骤,并通过C++代码实现。通过两轮细化操作提高骨架提取精度,同时优化了运算速度。最后,展示了算法在图像处理上的应用,如映射到原图。此外,作者创建了一个学习交流群,旨在分享和探讨相关技术。
摘要由CSDN通过智能技术生成

粗暴的骨架法

将形态学算法引入光条纹中心提取 单纯提取骨架导致精度不高;反复细化操作导致运算速度降低
在这里插入图片描述

上代码

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <stdio.h>
using namespace std;
using namespace cv;

//-----------------------------------【全局变量声明部分】--------------------------------------
//		描述:全局变量声明
//-----------------------------------------------------------------------------------------------
Mat g_srcImage, g_dstImage, g_midImage, g_grayImage, imgHSVMask;//原始图、中间图和效果图
int threshold_value = 60;	//阈值
int size = 800;				//面积因子
float start_time, end_time, sum_time;	//处理时间

//-----------------------------------【全局函数声明部分】--------------------------------------
//		描述:全局函数声明
//-----------------------------------------------------------------------------------------------
void ThinSubiteration1(Mat& pSrc, Mat& pDst);
void ThinSubiteration2(Mat& pSrc, Mat& pDst);
void normalizeLetter(Mat& inputarray, Mat& outputarray);
void Line_reflect(Mat& inputarray, Mat& outputarray);
void Delete_smallregions(Mat& pSrc, Mat& pDst);

//-----------------------------------【main( )函数】--------------------------------------------
//		描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
   
    //载入原始图
    g_srcImage = imread("C:\\Users\\Charm Luo\\Desktop\\Laser extraction\\opncv提取中心线\\train\\129.png");  //读取素材图
    // 加载的图片的大小
    cout << g_srcImage.size() << endl;
    //记录开始处理的时间
    start_time = getTickCount();	

    //显示灰度图  
    cvtColor(g_srcImage, g_grayImage, COLOR_RGB2GRAY);
    cout << g_grayImage.size() << endl;
    imshow("【灰度图】", g_grayImage);

    //二值化
    threshold(g_grayImage, imgHSVMask, threshold_value, 255, THRESH_BINARY);
    imshow("【二值化】", imgHSVMask);

    g_midImage = Mat::zeros(imgHSVMask.size(), CV_8UC1);  //绘制

    //去除小面积区域
    Delete_smallregions(imgHSVMask, g_midImage);
    imshow("【目标图】", g_midImage);
    imwrite("Target_image129.jpg", g_midImage);

    //normalizeLetter显示效果图  
    normalizeLetter(g_midImage, g_dstImage);
    imshow("【效果图】", g_dstImage);

    //曲线映射到原图
    /*threshold(g_grayImage, g_midImage, threshold_value, 255, THRESH_BINARY);	
    imshow("【二值化图】", g_midImage);	*/										
    Line_reflect(g_dstImage, g_midImage);
    imshow("【映射图】", g_midImage);
    imwrite("Reflect_image129.jpg", g_midImage);

    //转换类型,保存skeleton图像
    normalize(g_dstImage, g_midImage, 0, 255, NORM_MINMAX, CV_8U);
    imwrite("Thinning_image129.jpg", g_midImage);

    //计算运行时间
    end_time = getTickCount();
    // 算法所用时间
    sum_time = (end_time - start_time) / getTickFrequency();
    printf("%lf s", sum_time);

    waitKey(0);

    return 0;

}


void ThinSubiteration1(Mat& pSrc, Mat&a
激光条纹中心提取的极值是一种常用于图像处理中的技术,特别是在光学测量和机器视觉领域。这种技术通常用于从干涉条纹图像中提取相位信息,进而进行三维形貌的测量。极值的基本思想是认为激光条纹的强度分布呈现正弦波形,条纹中心对应于正弦波的峰值或谷值。 以下是一个简化的极值提取激光条纹中心的Python代码示例: ```python import numpy as np import matplotlib.pyplot as plt def find_peaks(signal, n=5): """寻找局部极大值""" peaks = [] for i in range(1, len(signal) - 1): if (signal[i] > signal[i - 1]) and (signal[i] > signal[i + 1]): peaks.append(i) return peaks # 假设我们有一个一维的激光条纹强度信号 laser_signal = np.sin(np.linspace(0, 2 * np.pi, 100)) * 0.5 + 0.5 # 找到激光条纹中心位置的峰值 peaks = find_peaks(laser_signal) # 绘制原始信号和峰值 plt.plot(laser_signal) plt.plot(peaks, laser_signal[peaks], "ro") plt.title("Laser Stripe Center Extraction") plt.xlabel("Pixel") plt.ylabel("Intensity") plt.show() ``` 上述代码首先创建了一个模拟的激光条纹强度信号,然后通过`find_peaks`函数找到信号中的局部极大值,即为条纹中心的位置。最后,使用matplotlib绘制了原始信号和标记了峰值的位置。 在实际应用中,激光条纹可能不是一维的,而是二维的条纹图像。这种情况下,需要对二维图像的每一行或者每一列分别进行极值搜索,以获取条纹中心的二维坐标。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值