【西瓜书阅读笔记】03线性模型

一、基本形式

1、问题描述

2、函数形式

 3、向量形式

二、线性回归

1、一元线性回归

(1)问题描述

(2)目标函数

(3)目标函数求解

 2、多元线性回归

(1)关系式

(2)目标函数

满足满秩矩阵要求才可求逆。

 (3)非满秩情况

3、对数线性回归(log-linear regression)

(1) 关系式

 (2)图像

4、广义线性模型

 三、对数机率回归(逻辑回归)logistic regression

1、考虑二分类问题,y={0,1}

2、关系函数

(1)单位跃迁函数 unit-step function

该函数不可导,因此使用对数几率函数

(2)对数几率函数logistic function sigmoid

1)关系式

 

 2)性质

3)本质:用线性回归模型的结果去逼近真实标记的对数几率

4)优点:

 5)求解

补最大似然估计知识:【最透彻】13_最大似然估计【小元老师】考研数学,概率论与数理统计_哔哩哔哩_bilibili主要内容:最大似然估计的原理,步骤,三个例题精讲https://www.bilibili.com/video/BV1bx411E7cL?from=search&seid=17148535208114174312&spm_id_from=333.337.0.0

【数学基础】最大似然估计_Checkmate9949的博客-CSDN博客1、离散型随机变量若使X取4,5,6时的连乘概率最大,则P取0.5;2、连续型随机变量若是概率值f(x)连乘结果最大,则绿线u=100时满足条件。在现实中,通过使f(x)连乘结果最大,对u进行估计,即最大似然估计。...https://blog.csdn.net/Checkmate9949/article/details/120297243?spm=1001.2014.3001.5501最终求得beta

四、线性判别分析

1、概念

 2、二维图例

五、多分类学习

六、类别不平衡问题

1、概念

正例与反例相差过大。

2、当正例与反例数量相同时

 3、假设训练集是总体样本的无偏采样,且正例与反例相差多大时的补救措施:

4、再缩放,基于公式3.46进行适当修改,使其执行式3.47:

5、若假设“训练集是总体样本的无偏采样”不成立:

(1)欠采样:删除例子,使正反例数目接近;可能丢失重要信息;EasyEnsemble算法,将反例划分为若干个集合供不同的学习器学习,每个学习器都进行了欠采样,全局看未丢失重要信息。

(2)过采样:增加例子,使正反例数目接近;不能对初始样本进行重复采样,否则会造成过拟合。

(3)阈值移动:基于原始训练集学习,但根据式(3.48)嵌入其决策,进行预测。

七、梯度下降法

1、基本思想

过于复杂问题难以求导得解,以初始值迭代计算Loss函数

2、批量梯度下降

损失函数对各参数求偏导,在不同方向寻求Loss函数的最小化

 

 3、随机梯度下降

随机选择一个方向

4、学习率问题

(1)学习率过小或过大

 (2)解决方法:

1)网格搜索:设定迭代次数,尝试几种可能的参数,比较结果,选择最优。有点类似validation作法,即从validation数据集选择最优的参数,用于test。

2)梯度限制:设置大量迭代,当梯度向量小于某值时停止。

(3)局部最优与全局最优:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值