【高级微观经济学】利润最大化

本文探讨了经济学中的利润最大化问题,包括单要素和双要素情况下的必要条件。解释了内点解和角点解的概念,并阐述了要素需求函数的性质,如是要素价格的减函数和产品价格的增函数。此外,还讨论了利润函数的性质,证明了它是产品价格的增函数和要素价格的减函数,并且是一次齐次函数和凸函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、目标函数:利润最大化

 

二、利润最大化必要条件

1、内点解

(1)单要素情况:

 

 (2)双要素情况:

2、角点解:

即存在投入水平为0的要素。即X>=0。我们结合该约束条件构建拉格朗日函数:

可知,当投入生产要素为0时,其边际产出价值:p*f_{i}(X^{*}) 必然小于该要素价格\omega

注意:这里的p为产品价格,f_{i}(X^{*})为边际产量,两者相乘为边际价值。

三、要素需求函数的性质

1、厂商要素需求:

\mathbf{x}(p, \mathbf{w}); 厂商产品供给:y(p, \mathbf{w}) = f(\mathbf{x}(p, \mathbf{w}))

产品供给为要素需求的函数;要素需求为要素价格、产品价格的函数。

2、要素需求函数\mathbf{x}(p, \mathbf{w})是要素价格的减函数

(1)利润最大化的一二阶必要条件

(2)一阶必要条件等式对要素价格 \omega 求导,得

又已知二阶必要条件等式

因此,要素需求函数对要素价格\omega的导数小于0,即要素需求是要素价格的减函数。

3、要素需求函数\mathbf{x}(p, \mathbf{w})为产品价格的增函数

(1)同样根据利润最大化的一二阶必要条件:

 (2)等式(2.8)对产品价格p求导:

整理得,

又根据一阶必要条件f'>0

根据二阶必要条件知f''<0 ,得

 可知要素需求函数为产品价格的增函数。

4、双要素情况:要素需求为其价格的减函数

(1)根据利润函数对产品价格求一阶导:

pf(\mathbf{w}) - \mathbf{w} \mathbf{x}

(2)对要素1价格w_{1}求一阶偏导 :

 

 (3)对要素2价格w_{2}求一阶偏导 :

 

 (4)写成矩阵形式:

 求逆,得

 已知利润最大化的二阶必要条件为:生产函数的海赛矩阵为半负定的

 

 因此得等式左侧矩阵为半负定的,其主对角线元素为负值,即:

得要素需求为其价格的减函数。

5、双要素情况:要素价格的交叉效应对称

又知生产函数的海赛矩阵为对称矩阵,即f12=f21,因此左侧矩阵同样为对称矩阵,得:

因此,要素i需求量对要素j价格的弹性 等于 要素j需求量对要素i价格的弹性,即要素价格的交叉效应对称。

四、利润函数

将厂商所能达到的最大利润定义为其利润函数

1、利润函数的性质

(1)\pi (p, \mathbf{w})是产品价格p的增函数,是每一要素价格w_{i}的减函数;

(2)\pi (p, \mathbf{w})(p, \mathbf{w})的一次齐次函数:

(3) \pi (p, \mathbf{w})(p, \mathbf{w})的凸函数。

 2、证明:\pi (p, \mathbf{w})是产品价格p的增函数

(1)设要素需求函数\mathbf{x}(p^{i}, \mathbf{w}),设p^{1} \leqslant p^{2}

(2)根据利润函数定义:

\pi(p^{i}, \mathbf{w}) = p^{i}f(\mathbf{x}(p^{i}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{i}, \mathbf{w})

知 \pi(p^{2}, \mathbf{w}) = p^{2}f(\mathbf{x}(p^{2}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{2}, \mathbf{w})

(3)因为\mathbf{x}(p^{2}, \mathbf{w})为利润最大化的解,因此\pi(p^{2}, \mathbf{w})大于任何利润函数,注意只改变X(p,w)的值

p^{2}f(\mathbf{x}(p^{2}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{2}, \mathbf{w}) \geqslant p^{2}f(\mathbf{x}(p^{1}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{1}, \mathbf{w})

(4)又根据p^{1} \leqslant p^{2}知,p^{2}f(\mathbf{x}(p^{1}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{1}, \mathbf{w}) \geqslant p^{1}f(\mathbf{x}(p^{1}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{1}, \mathbf{w})

p^{2}f(\mathbf{x}(p^{1}, \mathbf{w})) - \mathbf{w}\mathbf{x}(p^{1}, \mathbf{w}) \geqslant \pi(p^{1}, \mathbf{w})

(5)最终得,\pi(p^{2}, \mathbf{w}) \geqslant \pi(p^{1}, \mathbf{w}),证明\pi(p^{i}, \mathbf{w})为产品价格p的增函数。

 3、证明: \pi (p, \mathbf{w})是每一要素价格w_{i}的减函数

(1)同理设\mathbf{w}^{2} \geqslant \mathbf{w}^{1} 

\pi(p, \mathbf{w}^{i}) = pf(\mathbf{x}(p, \mathbf{w}^{i})) - \mathbf{w}^i\mathbf{x}(p, \mathbf{w}^{i})

\pi(p, \mathbf{w}^{1}) = pf(\mathbf{x}(p, \mathbf{w}^{1})) - \mathbf{w}^1\mathbf{x}(p, \mathbf{w}^{1})

因为\mathbf{x}(p, \mathbf{w}^{i})为利润最大化的解,因此其利润函数\pi(p, \mathbf{w}^{1})大于任何利润,仍然只改变X(p,w)的值

pf(\mathbf{x}(p, \mathbf{w}^{1})) - \mathbf{w}^1\mathbf{x}(p, \mathbf{w}^{1})\geqslant pf(\mathbf{x}(p, \mathbf{w}^{2})) - \mathbf{w}^1\mathbf{x}(p, \mathbf{w}^2)

pf(\mathbf{x}(p, \mathbf{w}^{2})) - \mathbf{w}^1\mathbf{x}(p, \mathbf{w}^2) \geqslant pf(\mathbf{x}(p, \mathbf{w}^{2})) - \mathbf{w}^2\mathbf{x}(p, \mathbf{w}^2)

\pi(p, \mathbf{w}^{1}) \geqslant \pi(p, \mathbf{w}^{2}),证明 \pi (p, \mathbf{w})是每一要素价格w_{i}的减函数。

4、证明:利润函数为一次齐次函数

 设\mathbf{x}(p, \mathbf{w})为利润最大化问题的解,因此其大于所有利润函数

 两边同乘t,得

因此X(p,w)为下述最大化问题的解:

写出PI(tp, tw)的函数,将t提取出来,即得证。

5、证明:利润函数为(p,w)的凸函数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值