sparse double型矩阵转为full矩阵

有时候遇到的矩阵是这样的:
这里写图片描述
这是因为matlab中可以将稀疏矩阵变为这样的表达方式。
若观察时不方便,先将该矩阵转化为我们平时熟悉的矩阵:A=full(heart_scale_inst),转换后的结果如下:
这里写图片描述

MATLAB中,如果你有稀疏矩阵(TF,即sparse双精度数据类),提取其中的关键特征来进行机器学习通常涉及以下步骤: 1. **数据预处理**: - 确保矩阵是以`sparse`形式存储的,这可以通过使用`ismatrix`和`issparse`函数检查。 - 对于非零元素(即稀疏矩阵中的实际值),可能需要归一化或标准化,因为机器学习算法对特征的尺度敏感。 2. **特征提取**: - 常见的方法有选取具有较高权重的非零元素。你可以使用`nnz`和`find`函数来计算每个列(假设你是列主元)的非零数或提取非零位置。 - 使用`row(full(sparse))`和`nonzeros`可获取行索引和对应的特征值。 3. **选择重要特征**: - 可能根据系数绝对值大小排序(`sortrows(abs(sparseCoefficients), 'descend')`),保留较高的权重。 - 或者使用基于统计学的特征选择方法,如递归特征消除(RFE)、LASSO回归等。 4. **构建特征子集**: - 创建一个新的稠密矩阵,只包含选定的关键特征。 5. **应用到机器学习模**: - 使用`trainTestSplit`划分训练集和测试集。 - 使用选定的关键特征创建特征向量,适用于线性回归、决策树、SVM等模(例如`fitlm`、`fitctree`或`fitcsvm`)。 ```matlab % 示例: sparseMatrix = ...; % 输入稀疏矩阵 sparseValues = sparseMatrix(dataCol, :); % 提取某一列的数据 [indices, values] = find(sparseValues); % 获取非零索引和值 % 数据标准化/归一化 normalizedValues = zscore(values); % 根据需要选择前N个最重要的特征 N_features = 10; importantIndices = indices(1:N_features); keyFeatures = full(sparse(indices(N_features+1:end), :, normalizedValues(N_features+1:end))); % 划分数据 X_train, X_test, y_train, y_test = trainTestSplit(keyFeatures, labels, 'TrainProportion', 0.8); % 训练模 model = fitlm(X_train, y_train); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值