Action recognition进展介绍

本文介绍了Action Recognition领域的研究进展,重点讨论了深度学习方法,如Two Stream网络和3D卷积网络。Two Stream方法通过结合空间和时间信息提高识别效果,而3D卷积网络则直接处理视频数据,以捕获时空特征。此外,文章还提到了关键帧识别和时序编码等其他方法,以及它们在UCF101和HMDB51数据库上的性能表现。
摘要由CSDN通过智能技术生成

原文地址:http://blog.csdn.net/wzmsltw/article/details/70239000

随着深度学习技术的发展,以及计算能力的进步(GPU等),现在基于视频的研究领域越来越受到重视。视频与图片最大的不同在于视频还包含了时序上的信息,此外需要的计算量通常也大很多。目前主要在做视频中动作定位相关的工作,为了开拓思路,读了不少视频分析相关领域的文章,所以打算写几篇博客,对视频分析相关的几个领域做一个简要的介绍。

这篇主要介绍Action Recognition(行为识别)这个方向。这个方向的主要目标是判断一段视频中人的行为的类别,所以也可以叫做Human Action Recognition。虽然这个问题是针对视频中人的动作,但基于这个问题发展出来的算法,大都不特定针对人,也可以用于其他类型视频的分类。

任务特点及分析

目的

给一个视频片段进行分类,类别通常是各类人的动作

特点

简化了问题,一般使用的数据库都先将动作分割好了,一个视频片断中包含一段明确的动作,时间较短(几秒钟)且有唯一确定的label。所以也可以看作是输入为视频,输出为动作标签的多分类问题。此外,动作识别数据库中的动作一般都比较明确,周围的干扰也相对较少(不那么real-world)。有点像图像分析中的Image Classification任务。

难点/关键点

  • 强有力的特征:即如何在视频中提取出能更好的描述视频判断的特征。特征越强,模型的效果通常较好。
  • 特征的编码(encode)/融合(fusion):这一部分包括两个方面,第一个方面是非时序的,在使用多种特征的时候如何编码/融合这些特征以获得更好的效果;另外一个方面是时序上的,由于视频很重要的一个特性就是其时序信息,一些动作看单帧的图像是无法判断的,只能通过时序上的变化判断,所以需要将时序上的特征进行编码或者融合,获得对于视频整体的描述。
  • 算法速度:虽然在发论文刷数据库的时候算法的速度并不是第一位的。但高效的算法更有可能应用到实际场景中去。

常用数据库

行为识别的数据库比较多,这里主要介绍两个最常用的数据库,也是近年这个方向的论文必做的数据库。

  • UCF101:来源为YouTube视频,共计101类动作,13320段视频。共有5个大类的动作:1)人-物交互;2)肢体运动;3)人-人交互;4)弹奏乐器;5)运动。数据库主页
  • HMDB51:来源为YouTube视频,共计51类动作,约7000段视频。数据库主页

在Actioin Recognition中,实际上还有一类骨架数据库,比如M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值