Caffe Layers 学习
1、Inner Product layer
功能:全连接层,把输入当作成一个向量,输出也是一个简单向量(把输入数据blobs的 width和 height全变为1。
输入: n*c0*h*w
输出: n*c1*1*1
全连接层实际上也是一种卷积层,只是它的卷积核大小和原数据大小一致。因此它的参数基本和卷积层的参数一样。
层类型:InnerProduct
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。
如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
必须设置的参数:
num_output: 过滤器( filfter)的个数
其它参数:
weight_filler: 权值初始化。 默认为“constant”,值全为0,很多时候我们用”xavier”算法来进行初始化,也可以设置为”gaussian”
bias_filler: 偏置项的初始化。一般设置为”constant”,值全为0。
bias_term: 是否开启偏置项,默认为true, 开启
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
2、reshape layer
功能:在不改变数据的情况下,改变输入的维度。
层类型:Reshape
先来看例子,
layer {
name: "reshape"
type: "Reshape"
bottom: "input"
top: "output"
reshape_param {
shape {
dim: 0 # copy the dimension from below
dim: 2
dim: 3
dim: -1 # infer it from the other dimensions
}
}
}
有一个可选的参数组shape, 用于指定blob数据的各维的值(blob是一个四维的数据:n*c*w*h)。
dim:0 表示维度不变,即输入和输出是相同的维度。
dim:2 或 dim:3 将原来的维度变成2或3
dim:-1 表示由系统自动计算维度。数据的总量不变,系统会根据blob数据的其它三维来自动计算当前维的维度值 。
假设原数据为:64*3*28*28, 表示64张 3通道的28*28的彩色图片
经过reshape变换:
reshape_param {
shape {
dim: 0
dim: 0
dim: 14
dim: -1
}
}
输出数据为:64*3*14*56。
3、softmax-loss layer
softmax-loss层和softmax层计算大致是相同的。
softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。
Logistic Regression 只能用于二分类,而softmax可以用于多分类。
关于两者的区别更加具体的介绍,可参考: http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/
用户可能最终目的就是得到各个类别的概率似然值,这个时候就只需要一个 Softmax层,而不一定要进行softmax-Loss 操作;或者是用户有通过其他什么方式已经得到了某种概率似然值,然后要做最大似然估计,此时则只需要后面的 softmax-Loss 而不需要前面的 Softmax 操作。因此提供两个不同的 Layer 结构比只提供一个合在一起的 Softmax-Loss Layer 要灵活许多。
不管是softmax layer还是softmax-loss layer,都是没有参数的,只是层类型不同而已。
softmax-loss layer:输出loss值
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip1"
bottom: "label"
top: "loss"
}
softmax layer: 输出似然值
layers {
bottom: "cls3_fc"
top: "prob"
name: "prob"
type: “Softmax"
}
4、Concat layer
功能:concat层实现输入数据的拼接。
该层有两个相同作用的参数:
message ConcatParameter {
//指定拼接的维度,默认为1即以channel通道进行拼接;支持负索引,即-1表示最后一个维度
optional int32 axis = 2 [default = 1];
// 以后会被弃用,作用同axis一样,但不能指定为负数
optional uint32 concat_dim = 1 [default = 1];
}
caffe中数据通常为4个维度,即 num×channels×height×width,因此默认值-1表示channels通道进行拼接。
使用方法如下
layer {
name: "data_all"
type: "Concat"
bottom: "data_classfier"
bottom: "data_boundingbox"
bottom: "data_facialpoints"
top: "data_all"
concat_param {
axis: 0
}
}
除了拼接维度外的其它维度都必须相等。
比如上面,输入图像均为 24×24×3, 用于分类的有150张图片, 用于boundingbox回归的有50张, 用于关键点回归的也有50张, 则最后拼接的结果就是 (150+50+50)×3×24×24。
5、Slice layer
既然有合并,那么相应的也有拆分。slice层共有三个参数:
message SliceParameter {
// 下面两个指定沿哪个维度进行拆分,默认拆分channels通道
optional int32 axis = 3 [default = 1];
optional uint32 slice_dim = 1 [default = 1];
// 指定拆分点
repeated uint32 slice_point = 2;
}
现在我们就要把之前concat合并的数据按照原样拆分:
layer {
name: "data_each"
type: "Slice"
bottom: "data_all"
top: "data_classfier"
top: "data_boundingbox"
top: "data_facialpoints"
slice_param {
axis: 0
slice_point: 150
slice_point: 200
}
}
其中slice_point的个数必须等于top的个数减一。输入的data_all维度为 250×3×24×24,拆分后的3个输出的维度依次为 150×3×24×24, 50×3×24×24, 50×3×24×24。
6、Flatten layer
Flattening:类型为:Flatten
偏平的意思,如 flattens an input of shape n * c * h * w to a simple vector output of shape n * (c*h*w))。
本人才疏学浅,如有错误,请及时指正!