学习Pytorch笔记,完整notebook代码链接pytorch-book/chapter02-quickstart/chapter2: PyTorch快速入门.ipynb at master · chenyuntc/pytorch-book (github.com)
Tensor
加法三种写法:
import torch as t
x = t.rand(5, 3)
y = t.rand(5, 3)
x + y # 第一种
t.add(x, y) # 第二种
result = t.Tensor(5, 3) #预先分配空间
t.add(x, y, out=result) #第三种
print('最初y')
print(y)
print('第一种加法,y的结果')
y.add(x) # 普通加法,不改变y的内容
print(y)
print('第二种加法,y的结果')
y.add_(x) # inplace 加法,y变了
print(y)
最初y tensor([[0.4018, 0.0661, 0.1942], [0.9261, 0.1729, 0.3974], [0.3494, 0.5539, 0.0621], [0.5915, 0.7290, 0.3228], [0.9858, 0.6441, 0.4047]]) 第一种加法,y的结果 tensor([[0.4018, 0.0661, 0.1942], [0.9261, 0.1729, 0.3974], [0.3494, 0.5539, 0.0621], [0.5915, 0.7290, 0.3228], [0.9858, 0.6441, 0.4047]]) 第二种加法,y的结果 tensor([[1.3989, 0.5617, 0.9267], [1.4302, 0.4502, 0.5107], [0.5054, 1.4337, 0.4496], [1.4012, 1.5774, 0.9716], [1.5367, 1.2256, 0.5118]])
函数名后面带下划线_
的函数会修改Tensor本身。例如,x.add_(y)
和x.t_()
会改变 x
,但x.add(y)
和x.t()
返回一个新的Tensor, 而x
不变。
numpy 和tensor对象可以共享内存
import numpy as np
a = np.ones(5)
b = t.from_numpy(a) # Numpy ->Tensor
a, b
b.add_(1)
a, b
[2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
.item获取元素数值,tensor[idx]获取的还是一个0-dim tensor
scalar = b[0]
scalar.item() # 使用scalar.item()能从中取出python对象的数值
数据拷贝&共享内存
t.tensor()
或者tensor.clone()
总是会进行数据拷贝,新tensor和原来的数据不再共享内存。所以如果你想共享内存的话,建议使用torch.from_numpy()
或者tensor.detach()
来新建一个tensor, 二者共享内存。
tensor = t.tensor([3,4]) # 新建一个包含 3,4 两个元素的tensor
old_tensor = tensor
new_tensor = old_tensor.clone()
new_tensor[0] = 1111
old_tensor, new_tensor
out:(tensor([3, 4]), tensor([1111, 4]))
new_tensor = old_tensor.detach()
new_tensor[0] = 1111
old_tensor, new_tensor
out: (tensor([1111, 4]), tensor([1111, 4]))
tensor
out: tensor([1111, 4])
Tensor可通过.cuda
方法转为GPU的Tensor,从而享受GPU带来的加速运算。
autograd: 自动微分
深度学习的算法本质上是通过反向传播求导数,而PyTorch的autograd
模块则实现了此功能。在Tensor上的所有操作,autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。
要想使得Tensor使用autograd功能,只需要设置tensor.requries_grad=True
.
# 为tensor设置 requires_grad 标识,代表着需要求导数
# pytorch 会自动调用autograd 记录操作
x = t.ones(2, 2, requires_grad=True)
# 上一步等价于
# x = t.ones(2,2)
# x.requires_grad = True
x
Out:
tensor([[1., 1.], [1., 1.]], requires_grad=True)
y = x.sum()
y
Out:
tensor(4., grad_fn=<SumBackward0>)
y.grad_fn
Out:
<SumBackward0 at 0x7f63e55b7810>
y.backward() # 反向传播,计算梯度
# y = x.sum() = (x[0][0] + x[0][1] + x[1][0] + x[1][1])
# 每个值的梯度都为1
x.grad
Out:
tensor([[1., 1.], [1., 1.]])
注意:grad
在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。
# 以下划线结束的函数是inplace操作,会修改自身的值,就像add_
x.grad.data.zero_()
神经网络
Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用nn.Module
实现。LeNet的网络结构如图2-7所示。
这是一个基础的前向传播(feed-forward)网络: 接收输入,经过层层传递运算,得到输出。
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
# nn.Module子类的函数必须在构造函数中执行父类的构造函数
# 下式等价于nn.Module.__init__(self)
super(Net, self).__init__()
# 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'5'表示卷积核为5*5
self.conv1 = nn.Conv2d(1, 6, 5)
# 卷积层
self.conv2 = nn.Conv2d(6, 16, 5)
# 仿射层/全连接层,y = Wx + b
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# 卷积 -> 激活 -> 池化
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
# reshape,‘-1’表示自适应
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
Out:
Net( (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True) )
只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd
)。在forward
函数中可使用任何tensor支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。
网络的可学习参数通过net.parameters()
返回,net.named_parameters
可同时返回可学习的参数及名称。
params = list(net.parameters())
print(len(params))
# print(params)
print(params[0].size())
for name,parameters in net.named_parameters():
print(name,':',parameters.size())
Out:
conv1.weight : torch.Size([6, 1, 5, 5]) conv1.bias : torch.Size([6]) conv2.weight : torch.Size([16, 6, 5, 5]) conv2.bias : torch.Size([16]) fc1.weight : torch.Size([120, 400]) fc1.bias : torch.Size([120]) fc2.weight : torch.Size([84, 120]) fc2.bias : torch.Size([84]) fc3.weight : torch.Size([10, 84]) fc3.bias : torch.Size([10])
需要注意的是,torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。但如果只想输入一个样本,则用 input.unsqueeze(0)
将batch_size设为1。例如 nn.Conv2d
输入必须是4维的,形如。可将nSample设为1,即。
损失函数
nn实现了神经网络中大多数的损失函数,例如nn.MSELoss用来计算均方误差,nn.CrossEntropyLoss用来计算交叉熵损失。
output = net(input)
target = t.arange(0, 10).view(1, 10).float()
criterion = nn.MSELoss()
loss = criterion(output, target)
loss
output
tensor(28.9949, grad_fn=<MseLossBackward0>)
如果对loss进行反向传播溯源(使用gradfn
属性),可看到它的计算图如下:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
output = net(input)
target = t.arange(0, 10).view(1, 10).float()
criterion = nn.MSELoss()
loss = criterion(output, target)
loss
Out:tensor(28.9949, grad_fn=<MseLossBackward0>)
当调用loss.backward()
时,该图会动态生成并自动微分,也即会自动计算图中参数(Parameter)的导数。
net.zero_grad()
print(net.conv1.bias.grad)
loss.backward()
print(net.conv1.bias.grad)
None
tensor([-0.0857, -0.0101, 0.1339, 0.0129, 0.0696, 0.0432])
Optimizer
在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下:
weight = weight - learning_rate * gradient
手动实现如下:
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)# inplace 减法
torch.optim
中实现了深度学习中绝大多数的优化方法,例如RMSProp、Adam、SGD等,更便于使用,因此大多数时候并不需要手动写上述代码。
import torch.optim as optim
#新建一个优化器,指定要调整的参数和学习率
optimizer = optim.SGD(net.parameters(), lr = 0.01)
# 在训练过程中
# 先梯度清零(与net.zero_grad()效果一样)
optimizer.zero_grad()
# 计算损失
output = net(input)
loss = criterion(output, target)
#反向传播
loss.backward()
#更新参数
optimizer.step()
数据加载与预处理
在深度学习中数据加载及预处理是非常复杂繁琐的,但PyTorch提供了一些可极大简化和加快数据处理流程的工具。同时,对于常用的数据集,PyTorch也提供了封装好的接口供用户快速调用,这些数据集主要保存在torchvison中。
torchvision
实现了常用的图像数据加载功能,例如Imagenet、CIFAR10、MNIST等,以及常用的数据转换操作,这极大地方便了数据加载,并且代码具有可重用性。