利用OpenCV3处理文件

1. 读/写图像文件

OpenCV的imread函数()和imwrite函数()都可以支持各种静态文件格式。无论哪种格式,每个像素都有一个值,但不同格式表示像素的方式又有所不同。
利用二维numpy数组创建的简单图像和利用cv2.cvColor函数将该图像转换成BGR(Blue-green-red)格式,通过shape属性来查看图像的结构。
numpy创建的数组属性返回为(3,3),而转为BGR格式则返回(3,3,3),这表明每个像素存在三个通道。
在这里插入图片描述也可以通过读取一种格式的图像文件,然后将其保存为另一种格式,如下图:
在这里插入图片描述在默认的情况下,即使是灰度图像imread()函数也会返回BGR格式的图像,BGR和RGB所表的色彩空间相同,但是字节顺序相反。
以下选项可作为imread()函数的参数:
****IMREAD_ANYCOLOR = 4
****MREAD_ANYDEPTH = 2
****IMREAD_COLOR = 1
****IMREAD_GRAYSCALE = 0
****IMREAD_LOAD_GOAL = 8
****IMREAD_UNCHANGED = -1
下图则将加载的png文件作为灰度图像,然后又将其保存为灰度的png图像:
在这里插入图片描述无论采用哪种模式,imread()函数会删除所有alpha通道的信息(透明度)。imwrite()函数要求图像为BGR或灰度格式,并且每个通道要有一定的位(bit),输出格式要支持这些通道。例如,bmp格式要求每个通道有8位,而PNG允许每个通道有8位或16位。

2.图像与原始字节之间的转换

一个OpenCV图像是.array类型的二维或者三维数组。一个24位的BGR图像是一个三维数组,可使用表达式访问这些值,例如image[0,0,0],第一个值表示y或者行,第二个值表示x或者列,第三个值表示颜色通道。
还有另一种表达式,如image[0,0]或image[0,0]=128可表示为image.item((0,0))或image.setitem((0,0),128)。对于单像素操作第二种表示方式更为有效。
使用 Python标准的os.random()函数可随机生成原始字节,随后会把该字节转换为 NumPy数组。需要注意的是,诸如 numpy.random.randint(O,256,120000 reshape(300,400)语句也能直接(并且更高效地)随机生成 NumPy数组。使用 os.randon函数的唯一理由是该语句有助于展示原始字节的转换。

3. 使用numpy.array访问图像数据

#coding:utf-8
import cv2
import numpy as np
img = cv2.imread("D:\Algorithm\Learning_OpenCV_3_Computer_Vision_with_Python_Second_Edition_Code\Learning_OpenCV_3_Computer_Vision_with_Python_Second_Edition_Code\Chapter 3_Code\gg.jpeg")
# 使用循环来处理Pyhton数组的效率较低,使用数组索引能够高效的操作像素尤其对于视频数据来讲
img[:,:,1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值