利用kmeans三维聚类进行冲突分析

本文介绍了如何利用Python实现KMeans三维聚类方法进行冲突分析。通过聚类,可以将数据分为不同的组别,从而进行深入的冲突识别和理解。文章提供了完整的代码示例,并展示了聚类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原始数据如图
在这里插入图片描述

完整代码如下:

#coding:utf-8
import random
from sklearn import datasets
import pandas as pd
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


# 正规化数据集 X
def normalize(X, axis=-1, p=2):
    lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
    lp_norm[lp_norm == 0] = 1
    return X / np.expand_dims(lp_norm, axis)


# 计算一个样本与数据集中所有样本的欧氏距离的平方
def euclidean_distance(one_sample, X):
    one_sample = one_sample.reshape(1, -1)
    X = X.reshape(X.shape[0], -1)
    distances = np.power(np.tile(one_sample, (X.shape[0], 1)) - X, 2).sum(axis=1)
    return distances


class Kmeans():
    """Kmeans聚类算法.
    Parameters:
    -----------
    k: int
        聚类的数目.
    max_iterations: int
        最大迭代次数.
    varepsilon: float
    
function [outputArg1,outputArg2] = untitled(inputArg1,inputArg2) %% 参数设置 N = 1e5; % 符号数量 EbNo_dB = 0:2:12; % 信噪比范围 %% 生成随机符号 txSym = randi([0 3],1,N); %% 格雷编码映射 grayMap = [1+1j, -1+1j, -1-1j, 1-1j]/sqrt(2); modSig = grayMap(txSym + 1); % 提取实部和虚部 I = real(grayMap);% 提取实部 Q = imag(grayMap);% 提取虚部 % 创建星座图 figure; scatter(I, Q, 100, 'rx'); hold on; grid on; xline(0, '--', 'Color', [0.5 0.5 0.5]); yline(0, '--', 'Color', [0.5 0.5 0.5]); xlabel('In-phase (I)'); ylabel('Quadrature (Q)'); title('QPSK Constellation Diagram'); axis equal; %% 信道模拟 ber = zeros(size(EbNo_dB)); for k = 1:length(EbNo_dB) % 转换Eb/N0为SNR snr = EbNo_dB(k) + 10*log10(2); % 添加AWGN噪声 rxSig = awgn(modSig, snr, 'measured'); % 使用k-means聚类进行解调 % 将接收信号转换为二维矩阵(实部和虚部) rxSig_matrix = [real(rxSig); imag(rxSig)]'; % 使用k-means聚类,初始中心点为星座点 [idx, ~] = kmeans(rxSig_matrix, 4, 'Start', [real(grayMap); imag(grayMap)]'); % 将聚类结果映射回符号 estIdx = idx - 1; % k-means 的索引从1开始,需要减1 % 确保estIdx的长度与txSym一致 if length(estIdx) ~= length(txSym) error('解调后的符号数组长度与发送符号数组长度不一致!'); end % 计算误码率 ber(k) = sum(txSym ~= estIdx)/N; end %% 结果可视化 figure; % 创建新的图形窗口 semilogy(EbNo_dB, ber, '-o'); grid on; xlabel('SNR (dB)'); ylabel('BER'); title('QPSK误码率性能'); % 绘制解调后的星座图 figure; % 创建新的图形窗口 scatter(real(rxSig), imag(rxSig), 100, 'bo'); hold on; scatter(real(modSig), imag(modSig), 100, 'rx'); grid on; xline(0, '--', 'Color', [0.5 0.5 0.5]); yline(0, '--', 'Color', [0.5 0.5 0.5]); xlabel('In-phase (I)'); ylabel('Quadrature (Q)'); title('Received QPSK Constellation Diagram'); legend('Received Symbols', 'Transmitted Symbols'); axis equal; end上述代码在运行时提示无法执行赋值,因为左侧和右侧的元素数目不同。 出错 untitled2 (第 43 行) ber(k) = sum(txSym ~= estIdx)/N;帮我修改掉这个错误
最新发布
03-29
<think>嗯,用户遇到了MATLAB的错误,提示左右侧元素数量不同导致赋值失败,特别是在第43行的txSym、estIdx、ber这些变量。我需要先理解这个错误的原因。通常这种错误发生在赋值时左边和右边的变量维度不一致的时候。比如,左边是一个标量,右边是一个数组,或者两者的行数、列数不匹配。 首先,用户需要检查第43行代码的具体内容。可能的情况包括: 1. **变量维度不匹配**:比如左边是一个预分配好的数组,但右边计算出的结果长度不同。例如,左边是txSym(1, k),但右边返回的是多个值。 2. **动态扩展数组未初始化**:如果在循环中动态扩展数组而没有预先确定大小,可能会导致中间步骤维度变化。比如,如果txSym在循环中逐渐增加元素,但某次循环生成的元素数量与之前不同,就会出错。 3. **函数返回值的意外变化**:可能调用的某个函数在不同情况下返回不同长度的结果,比如某些情况下返回空值或不同大小的向量。 接下来,我需要建议用户逐步排查问题。首先,让他们在出错行前面设置断点,检查左右变量的size。使用disp(size(left))和disp(size(right))来查看维度。如果右边结果有时不一致,可能需要检查数据来源,比如是否有条件分支导致不同情况下的不同输出。 另外,预分配数组可以避免动态扩展的问题。比如,如果txSym是一个数组,应该在循环前用zeros或NaN预分配足够空间,这样每次赋值时就不会因为长度变化而出错。如果右边结果长度确实可变,可能需要调整左边的索引方式,比如使用cell数组来存储不同长度的结果。 还有,循环中的索引是否正确?比如,如果k是循环变量,但右边的计算可能生成了多个值,而左边只期望一个位置,这时候需要用适当的索引来匹配。比如,如果右边是一个向量,左边需要赋值给一个行或列,可能需要转置或者调整索引范围。 此外,用户提到的estIdx和ber变量也需要检查,可能这些变量在赋值时也出现了维度不匹配的问题。需要逐一排查每个变量的赋值情况。 可能还需要检查是否有条件语句导致某些情况下跳过赋值,从而导致变量未被正确初始化,后续尝试赋值时出现维度问题。 总结来说,解决方法包括预分配数组、确保每次循环中生成的变量维度一致、使用cell数组处理可变长度数据、检查函数返回值的一致性,以及正确管理索引范围。用户需要根据具体代码情况应用这些方法,逐步调试找到问题根源。</think>### 解决MATLAB赋值错误"左右侧元素数不同"的方法 这个错误发生在赋值操作符`=`两侧的变量维度不一致时,常见于以下三种场景: $$ \text{size(leftVar)} \neq \text{size(rightValue)} $$ #### 一、检查第43行代码结构 建议在出错行之前添加维度检查: ```matlab disp(['左侧维度:', num2str(size(txSym(estIdx)))]); disp(['右侧维度:', num2str(size(ber))]); ``` #### 二、常见修复方案 1. **预分配数组空间**(推荐) ```matlab % 原错误代码 txSym = []; for k = 1:N txSym(k) = ... % 可能出错 % 修复方案 txSym = zeros(1,N); % 预分配内存 ``` 2. **动态索引调整** ```matlab % 当右侧结果长度不定时 results_cell = cell(1,N); % 改用元胞数组 for k = 1:N results_cell{k} = ... % 任意长度的计算结果 ``` 3. **矩阵拼接验证** ```matlab % 检查矩阵拼接操作 if size(matrixA,2) ~= size(matrixB,2) error('列数不匹配'); end combined = [matrixA; matrixB]; ``` #### 三、深层错误排查流程 1. 检查所有涉及变量的初始化位置 2. 在循环体内添加断点调试 3. 验证所有自定义函数的输出维度稳定性 4. 使用try-catch捕获异常: ```matlab try txSym(estIdx) = ber; catch ME fprintf('维度冲突:赋值区域%d维,值%d维\n',... numel(estIdx), numel(ber)); end ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值