只要8G显卡!本地运行最强Llama 3.1大模型!

只要8G显卡!本地运行最强Llama 3.1大模型!

前几天,Meta发布了他们迄今为止体量最大的开源AI模型——Llama 3.1。这个模型在多项基准测试中表现卓越,甚至优于GPT-4o和Anthropic的Claude 3.5 Sonnet。

这次发布的Llama 3.1有三个尺寸:8B(中杯)、70B(大杯)和 405B(超大杯)。相比几个月前发布的小型Llama 3模型,Llama 3.1复杂得多,能力更强。

Llama 3.1:开源模型的新纪元

在150多个基准测试中,Llama 3.1的405B版本表现卓越,追平甚至超越了现有的SOTA模型GPT-4o和Claude 3.5 Sonnet。这标志着开源模型在性能上首次超越闭源模型,开启了人工智能领域的新篇章。

模型能力与架构

Llama 3.1将上下文长度扩展至128K,新增对八种语言的支持。405B版本的模型在常识、可操纵性、数学、工具使用和多语言翻译等方面均展现出超越现有顶尖模型的能力。此外,还推出了8B和70B模型的升级版本,与同等参数下的顶尖模型能力基本持平。

训练与优化

Llama 3.1 405B模型在超过15万亿个token上进行训练,采用了优化后的训练栈和超过16000个H100 GPU的算力规模。模型采用了标准的解码器Transformer架构,并进行了细微调整,以及迭代的post-training流程,包括SFT和DPO,以提升性能。

快速上手指南

上述 AI 工具已经制作成了一键启动包,你只需点击即可使用,再也不用担心配置环境出现各种问题。

电脑配置要求

  • Windows 10/11 64位操作系统

  • 8G显存以上英伟达显卡

下载和使用教程

  1. 下载压缩包:下载地址:https://xueshu.fun/4999/

  2. 解压文件:解压后,最好不要有中文路径,双击“run.exe”文件运行。

  3. 浏览器访问:软件会自动打开浏览器,界面如下所示。

未来展望

随着Llama 3.1的发布,我们有理由相信,开源AI将成为行业的新标准。Meta承诺将继续致力于开源人工智能的发展,并与全球开发者和合作伙伴一起,推动人工智能技术的进步,造福全人类。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要帮助用户解决在PyCharm中配置llama3.1模型以支持Continue插件的使用问题。首先,我需要回顾用户提供的引用内容和具体要求。 用户提到了引用[1],指出Continue插件本身不提供AI模型,但支持多种接入方式。引用[3]则提到了PyCharm接入DeepSeek的教程,可能涉及模型配置步骤。用户的目标是配置llama3.1模型,因此需要结合这些信息。 首先,我需要确认Continue插件是否支持llama3.1模型。根据引用[1],Continue支持通过本地模型或API接入,因此用户需要先部署llama3.1模型。这可能涉及到本地运行模型或使用云服务API。 接下来,用户需要在PyCharm中安装Continue插件。这部分步骤相对直接,但需要指导用户正确安装并重启IDE。 然后,配置模型部分。如果用户选择本地部署,可能需要使用llama.cpp(如引用[2]提到的)来部署模型,并在Continue中设置本地服务器的地址。如果是API方式,需要获取API密钥并填入配置。 另外,用户可能需要下载模型文件,例如从Hugging Face获取llama3.1的GGUF格式文件,并用llama.cpp加载。需要确保用户了解如何启动本地服务器,并测试连接是否成功。 可能的问题包括模型路径错误、服务器未正确启动或API密钥无效。需要提醒用户检查这些部分,并提供常见问题解决方法。 最后,生成相关问题需要考虑用户可能遇到的后续问题,比如性能优化、API替代方案或调试技巧。 需要确保步骤清晰,避免技术术语过多,同时引用相关的引用内容,如引用[1]和[3]中的信息,确保用户按照正确流程操作。</think>以下是PyCharm配置llama3.1模型实现Continue功能的详细教程: ### 一、环境准备 1. 安装llama.cpp(支持CPU推理) ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make ``` 需准备至少8GB内存环境[^2] 2. 下载llama3.1模型文件 推荐使用量化版GGUF格式文件(如llama3.1-8b-chinese.Q4_K_M.gguf) ### 二、PyCharm配置步骤 1. 安装Continue插件 - 通过插件市场搜索"Continue"安装 - 重启IDE完成安装[^1] 2. 配置模型接入 ```json // 在Continue配置文件中添加 { "models": [{ "title": "Llama3.1", "model": "llama3.1", "apiBase": "http://localhost:8080", "completionOptions": { "temperature": 0.7 } }] } ``` 3. 启动本地模型服务 ```bash ./server -m models/llama3.1-8b-chinese.Q4_K_M.gguf -c 2048 ``` ### 三、功能验证 1. 使用快捷键`Ctrl+Shift+L`调出Continue面板 2. 输入测试指令: ```prompt // 请用Python实现快速排序算法 ``` 3. 观察模型生成的代码是否符合预期 ### 四、常见问题解决 - 连接失败:检查8080端口是否被占用 - 响应缓慢:尝试降低上下文长度参数`-c` - 中文支持异常:确认模型文件包含中文词表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值