133 克隆图
题目
给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。
图中的每个节点都包含它的值 val
(int
) 和其邻居的列表(list[Node]
)。
class Node {
public int val;
public List<Node> neighbors;
}
测试用例格式:
简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1
),第二个节点值为 2(val = 2
),以此类推。该图在测试用例中使用邻接列表表示。
邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。
给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。
输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
示例2:
输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。
示例3:
输入:adjList = []
输出:[]
解释:这个图是空的,它不含任何节点。
示例4:
输入:adjList = [[2],[1]]
输出:[[2],[1]]
提示:
- 节点数不超过 100 。
- 每个节点值
Node.val
都是唯一的,1 <= Node.val <= 100
。 - 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
- 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
- 图是连通图,你可以从给定节点访问到所有节点。
思路
提示:如果在递归调用中传入节点自身会出现什么情况?为什么每次递归调用输入不同的节点,却执行相同的操作。实际上,只需要保证对一个节点的递归调用正确即可,其他的节点也会在递归过程中建立正确的连接关系。
代码
package com.janeroad;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
class Node {
public int val;
public List<Node> neighbors;
public Node() {}
public Node(int _val,List<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
public class test5 {
private HashMap<Node, Node> visited = new HashMap <> ();
public Node cloneGraph(Node node) {
if (node == null) {
return node;
}
// 如果以前已经访问过该节点。 从访问的字典中返回克隆。
if (visited.containsKey(node)) {
return visited.get(node);
}
//为给定节点创建一个克隆。 注意,到目前为止,我们还没有克隆邻居,因此是[]。
Node cloneNode = new Node(node.val, new ArrayList());
//key是原始节点,value是克隆节点。
visited.put(node, cloneNode);
//遍历邻居以生成其克隆//并准备要添加到克隆节点的克隆邻居列表。
for (Node neighbor: node.neighbors) {
cloneNode.neighbors.add(cloneGraph(neighbor));
}
return cloneNode;
}
}