给定无向连通图中一个节点的引用,返回该图的深拷贝(克隆)。图中的每个节点都包含它的值 val(Int) 和其邻居的列表(list[Node])。
输入:
{“KaTeX parse error: Expected '}', got 'EOF' at end of input: …"neighbors":[{"id”:“2”,“neighbors”:[{“KaTeX parse error: Expected 'EOF', got '}' at position 9: ref":"1"}̲,{"id”:“3”,“neighbors”:[{“KaTeX parse error: Expected 'EOF', got '}' at position 9: ref":"2"}̲,{"id”:“4”,“neighbors”:[{“KaTeX parse error: Expected 'EOF', got '}' at position 9: ref":"3"}̲,{"ref”:“1”}],“val”:4}],“val”:3}],“val”:2},{"$ref":“4”}],“val”:1}
解释:
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
提示:
节点数介于 1 到 100 之间。
无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
必须将给定节点的拷贝作为对克隆图的引用返回。
DFS:
"""
# Definition for a Node.
class Node:
def __init__(self, val, neighbors):
self.val = val
self.neighbors = neighbors
"""
class Solution:
def cloneGraph(self, node: 'Node') -> 'Node':
if not node:
return None
self.node_dict = {}
return self.helper(node)
def helper(self, node):
if node in self.node_dict: # 如果存在就直接返回
return self.node_dict[node]
cur = Node(node.val, [])
self.node_dict[node] = cur
for one in node.neighbors: # 不存在就先添加,再递归邻居
self.node_dict[node].neighbors += [self.helper(one)]
return self.node_dict[node]