方差分析是用来研究诸多控制变量中哪些变量对观测变量的变化有显著性性的影响,对观测变量有显著性影响的各个控制变量的不同水平以及各个水平的交互搭配是如何影响观测变量的。方差分析认为观测变量值的变化是有控制变量的不同水平和随机因素影响的,如果控制变量的不同水平对观测变量产生了显著性影响,则他和随机变量共同作用会使得观测值有显著性变动,即如果观测值在某个控制变量的各个水平下出现了明显的波动,则认为该变量可以使观测值发生显著性影响。它的两个基本假设是观测变量各总体应服从正态分布;观测变量各总体的方差相同。方差分析对不同水平的观测所对应的总体分布分布是否存在显著性差异的推断可以转化成对各个总体均值是否存在显著性差异的推断。方差分析基本思想:变异分解,总变异=随机变异+处理因素导致的变异,又可以分解为总变异=组内变异+组间变异,F=组间变异/组内变异,F的值越大,处理因素的影响越大。
单因素方差分析
顾名思义,单因素方差分析用来研究一个控制变量的不同水平是否对观测变量产生了显著性影响。
SST=SSA+SSE
SST:总离差平方和,它是样本中各个观测值与观测变量的均值的离差平方和。
k为控制变量的水平数, x i