Ural 1709. Penguin-Avia

http://acm.timus.ru/problem.aspx?space=1&num=1709


题意:给定一个有若干条边的无向图,删除和增加边的代价分别为da,求若使该图成为一棵树最小代价是多少。


解法:首先要把图的每一个强联通分量删成树,然后再把每棵树连起来即可。对于第一步,采用染色法。任取一个没有被染色的点,dfs由该点可到达的点,标记可到点表示为同一强联通分量,并且标记所经历的边。如果两点有相同标记且之间的边未被标记的话,则该边可删去。连树的话,从第一个点分别向其它树任意一点连一条边即可。


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<map>
#include<vector>

#define N 105

using namespace std;

int maps[N][N],tp[N],n,d,a;
long long ans;

void col(int x,int c)
{
    int i;
    for (i=1;i<=n;i++)
    if (maps[x][i]==1)
    {
        if (tp[i]==0)
        {
            tp[i]=c;
            maps[x][i]=maps[i][x]=4;
            col(i,c);
        }
        else
        {
            ans+=d;
            maps[x][i]=maps[i][x]=3;
        }
    }
}

int main()
{
    freopen("a","r",stdin);

    int i,j,c;
    ans=0;
    char s[200];
    scanf("%d",&n);
    scanf("%d%d",&d,&a);
    memset(maps,0,sizeof(maps));

    gets(s);
    for (i=1;i<=n;i++)
    {
        gets(s);
        for (j=0;j<n;j++) maps[i][j+1]=s[j]-'0';
    }

    for (i=1;i<=n;i++) tp[i]=0;

    c=0;
    for (i=1;i<=n;i++)
    if (tp[i]==0)
    {
        c++;
        tp[i]=c;
        col(i,c);
    }

    bool tp1[N];
    for (i=1;i<=c;i++) tp1[i]=false;
    tp1[1]=true;

    for (i=2;i<=n;i++)
    if (tp[i]!=tp[1] && tp1[tp[i]]==false)
    {
        maps[i][1]=maps[1][i]=2;//a
        ans+=a;
        tp1[tp[i]]=true;
    }

    printf("%lld\n",ans);
    for (i=1;i<=n;i++)
    {
        for (j=1;j<=n;j++)
        if (maps[i][j]==2) printf("a");
        else if (maps[i][j]==3) printf("d");
        else printf("0");

        printf("\n");
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值