http://acm.timus.ru/problem.aspx?space=1&num=1709
题意:给定一个有若干条边的无向图,删除和增加边的代价分别为d和a,求若使该图成为一棵树最小代价是多少。
解法:首先要把图的每一个强联通分量删成树,然后再把每棵树连起来即可。对于第一步,采用染色法。任取一个没有被染色的点,dfs由该点可到达的点,标记可到点表示为同一强联通分量,并且标记所经历的边。如果两点有相同标记且之间的边未被标记的话,则该边可删去。连树的话,从第一个点分别向其它树任意一点连一条边即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#define N 105
using namespace std;
int maps[N][N],tp[N],n,d,a;
long long ans;
void col(int x,int c)
{
int i;
for (i=1;i<=n;i++)
if (maps[x][i]==1)
{
if (tp[i]==0)
{
tp[i]=c;
maps[x][i]=maps[i][x]=4;
col(i,c);
}
else
{
ans+=d;
maps[x][i]=maps[i][x]=3;
}
}
}
int main()
{
freopen("a","r",stdin);
int i,j,c;
ans=0;
char s[200];
scanf("%d",&n);
scanf("%d%d",&d,&a);
memset(maps,0,sizeof(maps));
gets(s);
for (i=1;i<=n;i++)
{
gets(s);
for (j=0;j<n;j++) maps[i][j+1]=s[j]-'0';
}
for (i=1;i<=n;i++) tp[i]=0;
c=0;
for (i=1;i<=n;i++)
if (tp[i]==0)
{
c++;
tp[i]=c;
col(i,c);
}
bool tp1[N];
for (i=1;i<=c;i++) tp1[i]=false;
tp1[1]=true;
for (i=2;i<=n;i++)
if (tp[i]!=tp[1] && tp1[tp[i]]==false)
{
maps[i][1]=maps[1][i]=2;//a
ans+=a;
tp1[tp[i]]=true;
}
printf("%lld\n",ans);
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
if (maps[i][j]==2) printf("a");
else if (maps[i][j]==3) printf("d");
else printf("0");
printf("\n");
}
return 0;
}