目录
一、概念
区间DP:属于线性DP的一种,它以“区间长度”作为DP的“阶段”,使用两个坐标(区间的左、右端点)描述每个维度。
二、例题分析
1.题目描述
设有 N 堆石子排成一排,其编号为 1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 4 堆石子分别为 1 3 5 2
, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2
, 又合并 1,2堆,代价为 9,得到 9 2
,再合并得到 11,总代价为4+9+11=24;
如果第二步是先合并2,3 堆,则代价为 7,得到 4 7
,最后一次合并代价为 11,总代价为 4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数 N 表示石子的堆数 N。
第二行 N 个数,表示每堆石子的质量(均不超过 1000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
2.题目分析
分析:原问题要求合并n堆石子,则原问题可以被分解合并2堆,3堆,乃至n堆,则子问题的阶段划分就是合并的堆数,则其状态表示的集合为F[l,r],表示合并第l到第r堆的石子消耗的代价,状态表示的属性为最小值。状态转移的方式为,第l到第r堆内的分成的两堆合并,从而得到将第l堆到第r堆都合并完,状态转移方程为F[l,r]=min((F[l,k]+F[k+1,r]+sum[l,r]),l<=k<r,(sum[l,r]为i到j合并的代价和),所求为将第1到第n堆石子都合并所需代价即F[1,n]。
l到r内部划分,如图1所示。
3.代码实现
#include<iostream>
using namespace std;
const int N=310;
int f[N][N];
int s[N];
int n;
int main(){
cin >>n;
for(int i=1;i<=n;i++) cin >>s[i],s[i]+=s[i-1]; ///前缀和处理区间和
for(int len=2;len<=n;len++){ ///堆数由2堆开始到n堆
for(int i=1;i+len-1<=n;i++){ ///该堆左端点由1开始,右端点要小于等于n
int j=i+len-1; ///当前右端点
f[i][j]=0x3f3f3f3f;
for(int k=i;k<j;k++){ ///内部两块划分,k由1到j-1,保证总有两堆石子可以合并
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
}
}
}
cout <<f[1][n] <<endl;
return 0;
}