DP——区间DP

目录

一、概念

二、例题分析

1.题目描述

2.题目分析

3.代码实现


一、概念

区间DP:属于线性DP的一种,它以“区间长度”作为DP的“阶段”,使用两个坐标(区间的左、右端点)描述每个维度。

二、例题分析

1.题目描述

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为4+9+11=24;

如果第二步是先合并2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 N 表示石子的堆数 N。

第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22

2.题目分析

分析:原问题要求合并n堆石子,则原问题可以被分解合并2堆,3堆,乃至n堆,则子问题的阶段划分就是合并的堆数,则其状态表示的集合为F[l,r],表示合并第l到第r堆的石子消耗的代价,状态表示的属性为最小值。状态转移的方式为,第l到第r堆内的分成的两堆合并,从而得到将第l堆到第r堆都合并完,状态转移方程为F[l,r]=min((F[l,k]+F[k+1,r]+sum[l,r]),l<=k<r,(sum[l,r]为i到j合并的代价和),所求为将第1到第n堆石子都合并所需代价即F[1,n]。

l到r内部划分,如图1所示。

图1

3.代码实现

#include<iostream>

using namespace std;

const int N=310;

int f[N][N];
int s[N];
int n;

int main(){
    cin >>n;
    for(int i=1;i<=n;i++)   cin >>s[i],s[i]+=s[i-1]; ///前缀和处理区间和
    
    for(int len=2;len<=n;len++){ ///堆数由2堆开始到n堆
        for(int i=1;i+len-1<=n;i++){ ///该堆左端点由1开始,右端点要小于等于n
            int j=i+len-1; ///当前右端点
            f[i][j]=0x3f3f3f3f; 
            for(int k=i;k<j;k++){ ///内部两块划分,k由1到j-1,保证总有两堆石子可以合并
                f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
            }
        }
    }
    cout <<f[1][n] <<endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值