一、The Shannon-Nyquist Sampling Theorem
问题:原始数据是连续函数,是否能用有限个采样百分之百重现原始数据?
香农回答了这个问题:如果原始数据中最大频率为f,如果采样频率为2f,即每隔1/(2f)秒取一次样,则可完全恢复原始数据。
陆吾生教授2010年的视频中给出了非常直观的解释:
图a是采样和恢复过程,图b表示原始函数的傅里叶变换得到的频域分布,图c表示取样后的频域分布,可以看到是原始频域分布复制粘贴,且按采样频率位移,因为频率分布不能重叠,否则信息就会丢失,这个用公式表示就是下图的关系,所以可以很容易得到采样频率和原始频率的关系,图d是低通滤波器,图e是低通部分,即原始数据的频率分布。
最终的恢复公式就是,可以看成是采样后的信号与sinc函数卷积的结果:
其中sinc(x)部分是,它的图示曲线是:
二、Sparse and Compressible Signals
(我的理解)如果信号是由某种分布或者几种分布构成,则信号是可以被压缩的。
比如离散余弦变换DCT和离散小波变换DWT,本质上即是预先设定的两组正交基,通过θ=C’x或θ=W‘x即可将原始向量解释为预设空间中的坐标。将θ中接近0的部分设为0,得到θ‘,则转换后的数据x' = Cθ'或x' = Wθ',其中C'和W’分别为C