压缩感知和稀疏信号处理课程笔记(陆吾生)

本文介绍了压缩感知和稀疏信号处理的概念,详细阐述了Shannon-Nyquist采样定理,以及如何利用DCT和DWT实现信号压缩。通过对线性方程组的分析,探讨了寻找最稀疏解的方法,并转换为1-norm优化问题。最后讨论了压缩感知理论,提出了在信息频率空间直接采样的思想,以及恢复信号所需的条件。
摘要由CSDN通过智能技术生成

一、The Shannon-Nyquist Sampling Theorem

问题:原始数据是连续函数,是否能用有限个采样百分之百重现原始数据?

香农回答了这个问题:如果原始数据中最大频率为f,如果采样频率为2f,即每隔1/(2f)秒取一次样,则可完全恢复原始数据。

陆吾生教授2010年的视频中给出了非常直观的解释:

图a是采样和恢复过程,图b表示原始函数的傅里叶变换得到的频域分布,图c表示取样后的频域分布,可以看到是原始频域分布复制粘贴,且按采样频率位移,因为频率分布不能重叠,否则信息就会丢失,这个用公式表示就是下图的关系,所以可以很容易得到采样频率和原始频率的关系,图d是低通滤波器,图e是低通部分,即原始数据的频率分布。

最终的恢复公式就是,可以看成是采样后的信号与sinc函数卷积的结果:

其中sinc(x)部分是,它的图示曲线是:

 

二、Sparse and Compressible Signals

(我的理解)如果信号是由某种分布或者几种分布构成,则信号是可以被压缩的。

比如离散余弦变换DCT和离散小波变换DWT,本质上即是预先设定的两组正交基,通过θ=C’x或θ=W‘x即可将原始向量解释为预设空间中的坐标。将θ中接近0的部分设为0,得到θ‘,则转换后的数据x' = Cθ'或x' = Wθ',其中C'和W’分别为C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值