压缩感知学习笔记-2017.01.13

 对压缩感知的简单理解:

(1)CS的前提是信号的稀疏性,这包括信号本身在时域上是稀疏的或者信号经过一定的变换在相应的变换域(包括频域、小波域等)上是稀疏的。

(2)通过y=Phi*x得到测量信号(y是M维,Phi是M*N维测量矩阵,x为N维原始信号),这样得到的测量信号y就可以传输或者存储了。

(3)但CS的关键问题是通过一定的算法在压缩采样数据接收端由y恢复出原始的信号x,此重构问题是一个欠定问题,通过相应的范数(最终都是求解一个L1范数优化)恢复方法是已知y和感知矩阵求解原始信号x在变换域上的估计值hat_y(也就是在稀疏域上的线性表示系数),得到hat_y之后经过反变换自然就得到了恢复的原始信号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值