如何为Windows应用选择显卡

问题:

     我们发布的Windows应用程序是个流媒体的应用,基本上用户都会选2K分辨率,160帧以上的配置,比较吃GPU资源,目前大多数笔记本电脑都有2个显卡,一个是CPU自带的核显,一个是独立显卡,两个显卡的编解码能力和3D性能往往又比较大的差异。如果应用缺省运行在低配置显卡上,用户就会抱怨卡顿。游戏应用也会遇到类似的问题。

解决方法:

    为应用指定性能更合适的显卡,这里合适是显卡编解码能力和3D显示能力不一定一致,按照应用的需求选择,如果搞不明白,那就分别选择两块显卡,那个体验好就选那个。设置方法如下:

1 添加应用到列表

2 选择显卡:

3 注意:

   因为显卡和应用的兼容性问题,或者显卡驱动问题,选择后可能导致显示异常,升级显卡驱动或者恢复选择就可以。

要在yolov8模型上进行单机双卡训练,可以使用以下步骤: 1. 确保机器上有两张可用的显卡。 2. 使用`--nproc_per_node=2`参数来设置每个节点使用两张卡进行训练。这将启动两个进程,每个进程使用一张显卡。 3. 如果想要指定具体使用哪两张卡进行训练,可以使用`CUDA_VISIBLE_DEVICES`环境变量。例如,设置`CUDA_VISIBLE_DEVICES=0,1`来指定使用第一张和第二张显卡进行训练。 4. 根据需要设置其他参数,例如批量大小(`--batch-size`)、训练轮数(`--epoch`)、数据集配置文件(`--data`)等。 5. 运行以下命令开始训练: ``` python -m torch.distributed.launch --nproc_per_node=2 train.py --weights yolov8.pt --img 640 --epoch 150 --data dataset.yaml --batch-size 64 --workers 16 --save-period 20 ``` 请注意,以上命令是一个示例,具体参数设置可能会根据你的实际情况有所不同。请根据自己的需求调整相应的参数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【深度学习 pytorch yolov 单机多卡的训练命令方式和注意事项](https://blog.csdn.net/weixin_40293999/article/details/127782051)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值