题目链接:点击打开链接
题意:题意很简单,问你1-N中有多少个和N的gcd是大于等于M的。
思路:让 n = a * b,x = a * d(b >= d),若gcd(x, n) = a ,那么 b 和 d 一定互质 ,而
此时 x的个数即 b 的欧拉函数。
这样问题就变成 在满足 b >= m 的情况下 , 对应n / b 的欧拉函数之和。
但枚举a必然会超时,所以我们要想一个办法去优化它。
我们可以折半枚举,这里的折半并不是二分的意思。
我们先看,我们枚举时,当i<sqrt(n),假设a=n / i, 当i>sqrt(n)之后 有b=n/i,我们观察到
当n%i==0时,会出现一种情况,就是a*b==n。所以我们就可以只需要枚举sqrt(n)种情
况,然后和它对应的情况就是 n/i。
注意:i*i=n时只能加一次。
代码:
#include<bits/stdc++.h>
using namespace std;
int euler(int n)
{
int res = n, a = n;
for(int i = 2; i*i <= a; i++)
{
if(a%i == 0)
{
res = res/i*(i-1);
while(a%i == 0) a /= i;
}
}
if(a > 1) res = res/a*(a-1);
return res;
}
int main(void)
{
int n, m, t;
cin >> t;
while(t--)
{
scanf("%d%d", &n, &m);
int ans = 0;
for(int i = 1; i*i <= n; i++)
{
if(n%i == 0)
{
if(i >= m) ans += euler(n/i);
//i*i只能加一次
if(n/i >= m && i*i != n) ans += euler(i);
}
}
printf("%d\n", ans);
}
return 0;
}
GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1876 Accepted Submission(s): 940
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
Source
Recommend
lcy