hdoj 2588 GCD (欧拉函数)

题目链接:点击打开链接


题意:题意很简单,问你1-N中有多少个和N的gcd是大于等于M的。



思路:让 n = a * b,x = a * d(b >= d),若gcd(x, n)  = a ,那么 b 和 d 一定互质 ,而


此时 x的个数即 b 的欧拉函数。 



这样问题就变成 在满足 b >= m 的情况下 , 对应n / b 的欧拉函数之和。


但枚举a必然会超时,所以我们要想一个办法去优化它。


我们可以折半枚举,这里的折半并不是二分的意思。

我们先看,我们枚举时,当i<sqrt(n),假设a=n / i, 当i>sqrt(n)之后 有b=n/i,我们观察到


n%i==0时,会出现一种情况,就是a*b==n。所以我们就可以只需要枚举sqrt(n)种情


况,然后和它对应的情况就是 n/i。


注意:i*i=n时只能加一次。


参考:1.点击打开链接 2.点击打开链接



代码:

#include<bits/stdc++.h>
using namespace std;

int euler(int n)
{
    int res = n, a = n;
    for(int i = 2; i*i <= a; i++)
    {
        if(a%i == 0)
        {
            res = res/i*(i-1);
            while(a%i == 0)  a /= i;
        }
    }
    if(a > 1) res = res/a*(a-1);
    return res;
}

int main(void)
{
    int n, m, t;
    cin >> t;
    while(t--)
    {
        scanf("%d%d", &n, &m);
        int ans = 0;
        for(int i = 1; i*i <= n; i++)
        {
            if(n%i == 0)
            {
                if(i >= m) ans += euler(n/i);
                //i*i只能加一次
                if(n/i >= m && i*i != n) ans += euler(i);
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}



GCD

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1876    Accepted Submission(s): 940


Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 

Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 

Output
For each test case,output the answer on a single line.
 

Sample Input
  
  
3 1 1 10 2 10000 72
 

Sample Output
  
  
1 6 260
 

Source
 

Recommend
lcy


 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值