离散信源小结

本文介绍了离散信源的概念,包括有记忆与无记忆信源,强调无记忆信源的独立性。接着讲解了平稳信源的定义,即与时间起点无关,只与符号相关。此外,深入探讨了马尔科夫信源,包括状态转移、状态转移图、状态转移矩阵和符号转移矩阵,并讨论了时齐马氏链的特性以及稳态分布的计算。最后提到了极限熵的计算方法。
摘要由CSDN通过智能技术生成

有无记忆

有记忆信源就是不独立的,无记忆信源就是独立的,把信息论和概率论结合在一起看这句话,在符号处理上会得到很大的启发。

a1,a2 是两个事件,可以看做两个信源,有记忆、不独立意味着:

P(a1a2)=P(a1)P(a2|a1)

参考概率论的知识;无记忆、独立意味着:

P(a1a2)=P(a1)P(a2)

平稳

上篇信息论的博文里说到一个信源平稳的定义是与时间起点无关,这个定义我一直难以理解,直到昨天的课上华老师讲清楚了,我们来看一个公式:

P(Xi=x)=P(Xj=x)=P(x)

不管事件 X 的时间起点是 i 还是 j ,只要它发出的信号是 x ,它发生的概率都是一样的,因此信息量也是一样的;所以一个平稳信源与时间起点无关,只与符号有关。

而与时间起点无关、可以平移这是一个重要性质,在很多定理的证明中都有运用。

极限熵

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值