有无记忆
有记忆信源就是不独立的,无记忆信源就是独立的,把信息论和概率论结合在一起看这句话,在符号处理上会得到很大的启发。
a1,a2 是两个事件,可以看做两个信源,有记忆、不独立意味着:
P(a1a2)=P(a1)P(a2|a1)
参考概率论的知识;无记忆、独立意味着:
P(a1a2)=P(a1)P(a2)
平稳
上篇信息论的博文里说到一个信源平稳的定义是与时间起点无关,这个定义我一直难以理解,直到昨天的课上华老师讲清楚了,我们来看一个公式:
P(Xi=x)=P(Xj=x)=P(x)
不管事件 X 的时间起点是
而与时间起点无关、可以平移这是一个重要性质,在很多定理的证明中都有运用。
极限熵