Transformer面试题:技术深入与创新应用篇
1.从数学角度阐明对Transformer任意位置和长度进行Mask的方式。
在Transformer模型中,Mask主要用于两种情况:在自注意力机制中防止未来信息的泄露(即在解码时或在处理序列时忽略某些位置),以及在处理不同长度的序列时对齐计算。
1)自注意力机制中的Mask:
- 在自注意力计算中,模型使用一个掩码矩阵 M 来控制注意力分数的计算。掩码矩阵通常是一个二进制矩阵,其维度与注意力分数矩阵相同。
- 对于解码器的自注意力层,掩码矩阵 M 被设置为一个上三角矩阵,以确保在计算当前词的注意力分数时,只考虑它之前的词,而不是之后的词。
2)掩码矩阵的数学定义:
3)Mask在注意力分数中的应用
4)处理不同长度的序列
- 当处理不同长度的序列时,可以使用填充(padding)操作来对齐序列长度。然后,通过一个长度掩码 L 来区分实际的序列元素和填充元素。
- 长度掩码 L是一个二进制向量,其长度等于序列的最大长度。实际的序列元素对应掩码中的1,填充元素对应0。
5)Mask的实现:
- 在实际实现中,掩码操作通常通过布尔索引或高级语言中的广播机制来应用,以确保计算仅在掩码为1的位置进行。
6)Mask的优化:
- 在某些实现中,为了避免在softmax操作中对掩码位置进行计算,可以直接在对数空间进行掩码操作,从而提高计算效率。
Mask操作在Transformer模型中通过控制注意力分数的计算和处理不同长度的序列,发挥着至关重要的作用。通过数学上的掩码矩阵和长度掩码,模型能够有效地处理序列数据,同时保持计算的高效性。
2.描述Encoder和Decoder中Attention机制的不同之处。
在Transformer模型中,编码器(Encoder)和解码器(Decoder)的注意力机制具有一些关键的不同之处。以下是对这些不同点的具体描述:
Encoder中的注意力机制:
-
自注意力(Self-Attention):编码器中的每个层只使用自注意力机制,这意味着每个位置的输出仅依赖于同一层内部的其它位置。
-
多头注意力:编码器的自注意力是多头的,允许模型同时在不同的表示子空间捕捉信息。
-
无跨层连接:编码器的每一层只处理来自输入序列的信息,不考虑来自解码器的信息。
-
遮蔽(Masking):在处理序列时,编码器使用遮蔽来防止未来位置的信息流入当前位置,确保因果关系。
Decoder中的注意力机制:
-
遮蔽(Masked Attention):解码器使用遮蔽来实现自回归特性,即在生成序列的每一步,只有已经生成的词可以影响当前词的生成。
-
编码器-解码器注意力(Encoder-Decoder Attention):除了自注意力外,解码器的每一层还会接收编码器的输出作为键(Key)和值(Value),这样解码器就可以关注编码器的整个输出序列。
-
单头注意力:在标准的Transformer模型中,解码器的编码器-解码器注意力通常是单头的,这有助于集中注意力在编码器输出的特定部分。
-
层间连接:解码器的每一层都会接收来自编码器的输出,并通过注意力机制整合这些信息。
数学上的不同:
实践中的不同:
-
编码器通常处理固定长度的序列,而解码器需要处理可变长度的序列,这要求解码器的注意力机制能够适应不断增长的输出序列。
-
解码器的自注意力需要动态更新遮蔽矩阵,以确保在生成每个新词时,只有之前的位置可以参与计算。
编码器和解码器在注意力机制上的主要区别在于解码器需要处理自回归生成任务,因此引入了遮蔽机制和编码器-解码器的交互,而编码器则专注于处理输入序列并提取特征。这些设计使得Transformer能够有效地处理序列到序列的任务。
有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】
-
描述Transformer中Decoder的Embedding layers架构设计、运行流程和数学原理。
-
描述Transformer进行Training的全生命周期的在Decoder中是如何进行Embedding的。
-
描述Transformer进行Inference的全生命周期的在Decoder中是如何进行Embedding的。
-
如果Transformer采用和Inference同样的流程进行Training,会有什么弊端?
-
为何Transformer的Matrix Dimensions是3D的?
-
描述只由一个Encoder和Decoder的Transformer使用了Attention的地方及其功能。
-
描述Training和Inference时Masking在Transformer使用Attention机制的地方的功能和数学实现。
-
描述Transformer的Training Loss工作流程和数学公式。
-
阐述Multi-head Attention机制中通过Linear layer计算QKV的logical和physical partition。
-
阐述Transformer中所有可训练操作的功能。
-
阐述QKV在Transformer中的功能。
-
解释Transformer中Attention Score衡量不同Words Relevance的原理。
-
描述Transformer如何知道什么样的Weights能更好地表达不同信息部分的注意力。
-
如何减少Transformer中训练后的Word Embeddings的Bias?
-
解决Self-attention和Word与自身Attention的问题?
-
Transformer如何有效表示NLP、CV等AI领域的信息?
-
通过Ground Truth训练Transformer使其具有泛化能力的原因?
-
Transformer的Attention计算时为何需要进行Scaling?
-
输入文本词汇的顺序如何由position encoding或multi-head attention实现?
-
描述multi-head attention的实现方式。
-
描述Transformer中non-linear操作的类型和数学原理。
-
为何Transformer论文作者声称"Attention is all you need"?
-
谈一下Teacher forcing的数学原理及其在Transformer中的应用。
-
在Transformer中Decoder进行Inference时接收的输入信息差异?
-
描述BERT的Tokenization机制的优势和不足。
-
Transformer的Input长度为何受限?
-
使用Pytorch实现Transformer时,如何使用或停用optimizer.zero_grad()?
文末
有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】