题目
题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
思路来源
https://www.cnblogs.com/wangxiaobao/p/5727003.html
谌爷
题解
大概就是一个双指针+二分的题目吧
考虑寻找第k大问题,在第一个数组里把前k/2个数找出来,第二个数组找出剩下k/2个数
如果第一个数组的最后一个和第二个数组的最后一个相等,说明至少有k-2个数<=这些数,那第k个数就肯定是这个相等的数
如果第一个数组的最后一个比第二个的最后一个小,说明第一个数组这前k/2肯定都不是中位数,第一个数组从k/2+1检查就好
如果第一个数组的最后一个比第二个数组的最后一个大,说明第二个数组前面找的都不是中位数,第二个数组从k/2+1检查就好
由于两边每次个数取的均等(最多差1),寻找的第rk小一次会少一半,
当这俩明显不均的话,会导致有一个到up,再下一层递归的时候会立刻终止,所以复杂度是log
心得
思路还是比较简单,然而需要处理若干情况
①存在vector为空②分奇偶讨论中位数③递归终止条件④数组检查位置到尾了如何处理
Leetcode困难级别题还真不是吹的啊……
一直在调下标,然后一直RE一直RE,最后也不知道怎么被自己搞AC的……
代码
//now1,now2代表当前检查到第几个 up1,up2是这两个vector的大小 rk是还需检查的数量
int dfs(vector<int>& nums1,int now1,int up1,vector<int>& nums2,int now2,int up2,int rk)
{
//printf("now1:%d up1:%d now2:%d up2:%d rk:%d\n",now1,up1,now2,up2,rk);
//if(!up1)return nums2[rk-1];
//if(!up2)return nums1[rk-1];
if(now1==up1)return nums2[now2+rk-1];//当前now1已达检查上界up1
if(now2==up2)return nums1[now1+rk-1];
if(rk==1)return min(nums1[now1],nums2[now2]);
int num1=min(rk-rk/2,up1-now1);
int num2=rk-num1;
if(num2>up2-now2)//不够凑,说明后一个数组剩余个数才是短板
{
num2=up2-now2;
num1=rk-num2;
}
if(nums1[now1+num1-1]==nums2[now2+num2-1])return nums1[now1+num1-1];
else if(nums1[now1+num1-1]<nums2[now2+num2-1])return dfs(nums1,now1+num1,up1,nums2,now2,up2,rk-num1);
else return dfs(nums1,now1,up1,nums2,now2+num2,up2,rk-num2);
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
int p=nums1.size(),q=nums2.size(),tot=p+q;
if(tot&1)return dfs(nums1,0,p,nums2,0,q,(tot+1)/2);
else return (dfs(nums1,0,p,nums2,0,q,tot/2)+dfs(nums1,0,p,nums2,0,q,tot/2+1))/2.0;
}