基于计算机视觉的路面裂缝检测和识别系统设计

233 篇文章 75 订阅 ¥59.90 ¥99.00
本文介绍了一个基于计算机视觉的路面裂缝检测和识别系统的设计,涉及数据采集、预处理、特征提取、特征选择、模型训练及分类。通过Matlab源代码示例,阐述了如何利用图像处理技术、Canny算子、形态学操作和机器学习模型实现路面裂缝的自动检测和识别,以提高道路维护效率和安全性。
摘要由CSDN通过智能技术生成

基于计算机视觉的路面裂缝检测和识别系统设计

概述:
路面裂缝对交通安全和道路使用寿命具有重要影响。为了及时发现和修复裂缝,基于计算机视觉的路面裂缝检测和识别系统被广泛应用。本文将介绍如何设计一个基于计算机视觉的路面裂缝检测和识别系统,并提供相应的Matlab源代码。

系统设计:

  1. 数据采集与预处理:
    首先,收集路面图像数据集,包括正常路面和带有裂缝的路面图像。对图像进行预处理,如调整大小、灰度化等。

  2. 特征提取:
    使用图像处理技术提取裂缝特征。可以采用基于边缘检测的方法,如Canny算子,来检测图像中的边缘。另外,还可以使用形态学操作,如腐蚀和膨胀,来增强裂缝的特征。

    Matlab源代码示例:

    % 载入图像
    img = imread('road_image.jpg');
    % 灰度化
    gray_img = rgb2gray(img);
    % 边缘检测
    edge_img = edge(gray_img, 'Canny');
    % 形态学操作
    se = strel('line', 3, 90);
    enhanced_img = imdilate(edge_img, se);
    ```
    
    
  3. 特征选择:
    根据提取的特征&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值