有序多项式 Logistic 回归分析 - 用 R 语言实现

80 篇文章 26 订阅 ¥59.90 ¥99.00
本文介绍了如何使用R语言进行有序多项式Logistic回归分析,包括数据准备、模型拟合和预测。通过示例代码展示了如何利用R的统计包建立模型并对新数据进行预测,帮助读者理解这一分析方法。
摘要由CSDN通过智能技术生成

有序多项式 Logistic 回归分析 - 用 R 语言实现

回归分析是统计学中常用的建模方法,用于预测一个或多个自变量与因变量之间的关系。Logistic 回归是回归分析的一种形式,适用于因变量为二分类或多分类的情况。而有序多项式 Logistic 回归是一种扩展的 Logistic 回归方法,适用于因变量为有序分类的情况。本文将介绍如何使用 R 语言实现有序多项式 Logistic 回归分析,并提供相应的源代码。

首先,我们需要准备数据集。假设我们有一个有序分类的因变量 Y 和一组自变量 X1、X2、…、Xn。我们的目标是根据自变量预测 Y 的类别。

# 导入所需的库
library(MASS)

# 创建数据集
set.seed(123)  # 设置随机种子以保证结果可重现

# 生成自变量 X
X <- mvrnorm(100, mu = rep(0, 3), Sigma = matrix(c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3))

# 生成有序分类的因变量 Y
Y <- cut(X %*% c(1, 2, 3) + rnorm(100), breaks = c(-Inf, 0, Inf), labels = c("Low", "Medium", "High"))

# 创建数据框
data <- data.frame(X, Y)

我们使用 MASS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值