有序多项式 Logistic 回归分析 - 用 R 语言实现
回归分析是统计学中常用的建模方法,用于预测一个或多个自变量与因变量之间的关系。Logistic 回归是回归分析的一种形式,适用于因变量为二分类或多分类的情况。而有序多项式 Logistic 回归是一种扩展的 Logistic 回归方法,适用于因变量为有序分类的情况。本文将介绍如何使用 R 语言实现有序多项式 Logistic 回归分析,并提供相应的源代码。
首先,我们需要准备数据集。假设我们有一个有序分类的因变量 Y 和一组自变量 X1、X2、…、Xn。我们的目标是根据自变量预测 Y 的类别。
# 导入所需的库
library(MASS)
# 创建数据集
set.seed(123) # 设置随机种子以保证结果可重现
# 生成自变量 X
X <- mvrnorm(100, mu = rep(0, 3), Sigma = matrix(c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3))
# 生成有序分类的因变量 Y
Y <- cut(X %*% c(1, 2, 3) + rnorm(100), breaks = c(-Inf, 0, Inf), labels = c("Low", "Medium", "High"))
# 创建数据框
data <- data.frame(X, Y)
我们使用 MASS