[理论公式推导 Matlab] 用 MATLAB 实现的简单线性回归算法
线性回归是一种常见的统计方法,用于建立变量之间的线性关系模型。在本文中,我们将使用 MATLAB 编程语言来实现一个简单的线性回归算法。我们将首先介绍线性回归的理论基础,然后给出相应的 MATLAB 源代码,最后通过一个示例展示算法的应用。
- 理论基础
线性回归的目标是找到一条直线,最小化观测数据与该直线之间的误差。假设我们有 n 组观测数据,每组数据包括一个自变量 x 和一个因变量 y。我们的目标是找到一条直线 y = mx + b,使得观测数据点与该直线的平方误差之和最小。
为了求解线性回归问题,我们可以使用最小二乘法。最小二乘法的思想是寻找使得误差的平方和最小的参数 m 和 b。我们可以通过最小化以下损失函数来实现:
L(m, b) = Σ(yᵢ - (mxᵢ + b))²
其中,Σ 表示对所有观测数据进行求和操作,yᵢ 是实际观测值,xᵢ 是对应的自变量值。
为了最小化损失函数,我们需要对 m 和 b 分别求偏导,并令导数等于零。通过对损失函数进行求导和代数运算,我们可以得到最优解的闭式表达式:
m = (nΣ(xy) - ΣxΣy) / (nΣ(x²) - (Σx)²)
b = (Σy - mΣx) / n
其中,Σ(x) 表示所有