AOE网上的关键路径

AOE网上的关键路径

Time Limit: 1000MS Memory limit: 65536K

题目描述

    一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。 
   
 AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
                                     

    
如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
    
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,到 579是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18

输入

    这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。

输出

    关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。

示例输入

9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2

示例输出

18
1 2
2 5
5 7
7 9

提示

 

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;

struct node
{
    int u, v, w, next;
}Edge[50010];

int head[50010], Indu[10010], Outdu[10010], Dis[50010],Pre[50010];
int Begin, End, cnt, n, m;
bool vis[50010];

void Add(int u, int v, int w)
{
    Edge[cnt].v = v;
    Edge[cnt].w = w;
    Edge[cnt].next = head[u];
    head[u] = cnt++;
}

void SPFA(int s)
{
    memset(Dis, -INF, sizeof(Dis));
    memset(vis, false, sizeof(vis));
    memset(Pre, -1, sizeof(Pre));

    queue<int >Q;
    Q.push(s);
    Dis[s] = 0;
    vis[s] = true;

    while(!Q.empty())
    {
        int u = Q.front();
        Q.pop();

        for(int i = head[u]; i != -1; i = Edge[i].next)
        {
            int v = Edge[i].v;
            int w = Edge[i].w;
            if(Dis[v] < Dis[u] + w)
            {
                Pre[v] = u;
                Dis[v] = Dis[u] + w;
                if(!vis[v])
                {
                    vis[v] = true;
                    Q.push(v);
                }
            }
            else if(Dis[v] == Dis[u] + w  && Pre[v]!= -1 && Pre[v] > u)
            {
                Pre[v] = u;
                if(!vis[v])
                {
                    vis[v] = true;
                    Q.push(v);
                }
            }
        }
        vis[u] = false;
    }
}
int main()
{
    std::ios::sync_with_stdio(false);
    while(cin>>n>>m)
    {
        cnt = 0;
        memset(Indu, 0, sizeof(Indu));
        memset(Outdu, 0, sizeof(Outdu));
        memset(head, -1, sizeof(head));
        for(int i = 0; i < m; i++)
        {
            int u, v, w;
            cin>>u>>v>>w;
            Indu[v]++, Outdu[u]++;
            Add(v, u, w);
        }
        for(int i = 1; i <= n; i++)
        {
            if(Outdu[i] == 0)
                Begin = i;
            if(Indu[i] == 0)
                End = i;
        }
        SPFA(Begin);
        cout<<Dis[End]<<endl;
        int x = End;
        while(x != Begin)
        {
            cout<<x<<" "<<Pre[x]<<endl;
            x = Pre[x];
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值