AOE网上的关键路径
Time Limit: 1000MS Memory limit: 65536K
题目描述
一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。
AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。
输入
这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。
输出
关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。
示例输入
9 11 1 2 6 1 3 4 1 4 5 2 5 1 3 5 1 4 6 2 5 7 9 5 8 7 6 8 4 8 9 4 7 9 2
示例输出
18 1 2 2 5 5 7 7 9
提示
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
struct node
{
int u, v, w, next;
}Edge[50010];
int head[50010], Indu[10010], Outdu[10010], Dis[50010],Pre[50010];
int Begin, End, cnt, n, m;
bool vis[50010];
void Add(int u, int v, int w)
{
Edge[cnt].v = v;
Edge[cnt].w = w;
Edge[cnt].next = head[u];
head[u] = cnt++;
}
void SPFA(int s)
{
memset(Dis, -INF, sizeof(Dis));
memset(vis, false, sizeof(vis));
memset(Pre, -1, sizeof(Pre));
queue<int >Q;
Q.push(s);
Dis[s] = 0;
vis[s] = true;
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = head[u]; i != -1; i = Edge[i].next)
{
int v = Edge[i].v;
int w = Edge[i].w;
if(Dis[v] < Dis[u] + w)
{
Pre[v] = u;
Dis[v] = Dis[u] + w;
if(!vis[v])
{
vis[v] = true;
Q.push(v);
}
}
else if(Dis[v] == Dis[u] + w && Pre[v]!= -1 && Pre[v] > u)
{
Pre[v] = u;
if(!vis[v])
{
vis[v] = true;
Q.push(v);
}
}
}
vis[u] = false;
}
}
int main()
{
std::ios::sync_with_stdio(false);
while(cin>>n>>m)
{
cnt = 0;
memset(Indu, 0, sizeof(Indu));
memset(Outdu, 0, sizeof(Outdu));
memset(head, -1, sizeof(head));
for(int i = 0; i < m; i++)
{
int u, v, w;
cin>>u>>v>>w;
Indu[v]++, Outdu[u]++;
Add(v, u, w);
}
for(int i = 1; i <= n; i++)
{
if(Outdu[i] == 0)
Begin = i;
if(Indu[i] == 0)
End = i;
}
SPFA(Begin);
cout<<Dis[End]<<endl;
int x = End;
while(x != Begin)
{
cout<<x<<" "<<Pre[x]<<endl;
x = Pre[x];
}
}
return 0;
}