基于MATLAB的LSTM时间序列神经网络预测
时间序列数据是一类在许多领域中广泛使用的数据类型,如金融、气象、股票市场等。预测时间序列数据对于决策制定和规划具有重要意义。长短期记忆(Long Short-Term Memory,LSTM)神经网络是一种在处理序列数据时表现出色的深度学习模型。在本文中,我们将使用MATLAB来构建一个LSTM时间序列神经网络模型,并通过该模型对时间序列数据进行预测。
首先,我们需要导入MATLAB的深度学习工具箱(Deep Learning Toolbox)。确保你已经安装了该工具箱,并使用以下命令导入:
% 导入深度学习工具箱
import matlab.net.*
import matlab.net.http.*
import matlab.net.http