1355.母亲的牛奶
1355. 母亲的牛奶 - AcWing题库 |
---|
难度:中等 |
时/空限制:1s / 64MB |
总通过数:3690 |
总尝试数:4984 |
来源: usaco training 1.5 |
算法标签 BFSDFS |
题目内容
农夫约翰有三个容量分别为 A,B,C 升的挤奶桶。
最开始桶 A 和桶 B 都是空的,而桶 C 里装满了牛奶。
有时,约翰会将牛奶从一个桶倒到另一个桶中,直到被倒入牛奶的桶满了或者倒出牛奶的桶空了为止。
这一过程中间不能有任何停顿,并且不会有任何牛奶的浪费。
请你编写一个程序判断,当 A 桶是空的时候,C 桶中可能包含多少升牛奶,找出所有的可能情况。
输入格式
共一行,包含三个整数 A,B,C。
输出格式
共一行,包含若干个整数,表示 C 桶中牛奶存量的所有可能情况,请将这些数字按升序排列。
数据范围
1≤A,B,C≤20
输入样例1:
8 9 10
输出样例1:
1 2 8 9 10
输入样例2:
2 5 10
输出样例2:
5 6 7 8 9 10
题目解析
初始ABC的容积分别是8,9,10
初始的奶量是0,0,10
第一次
-
把C倒入A桶里8,0,2
-
也可以倒入第二桶里0,9,1
第二次 -
把A倒回C里0,0,10
-
把A倒入B里0,8,2
-
把C倒入B里8,2,0
-
把B倒入A里8,1,1
-
把C倒入A里1,9,0
-
把B倒入C里0,0,10
每一个状态都可以用一个三元组来表示,可以将所有的三位组看成是图中的点,如果一个状态可以转化为另一个状态的话,可以看成这两个点之间有一条有向边
ABC的容量都是在20以内
所以A有21种选择,0~20,B和C也一样
所以总的状态数是21^3,10000左右
点与点之间有多少条边,对于每一种状态,比如当前牛奶量是a,b,c,容量是A,B,C的话,每个状态要选择从一个到达另外一个,一共有6种转移方式,因此每个点最多向外延伸6条边
所以最终得到一个10000个点的图,总边数是60000左右,初始状态是0,0,C
把所有初始点能到的点都遍历出来,遍历完之后,枚举一下所有第一个数是0的所有状态,然后去判断一下第三个数所有可能的结果
考察的是图的遍历
- BFS
- 代码比较长
- 可以求最短路
- 队列,需要的空间比较大
- DFS
- 好写
- 不能求最短
- 如果递归层数特别多的话,可能会爆栈
时间复杂度 O ( n 3 ) O(n^3) O(n3)
状态转移的时候要判断倒多少
比如A往B里倒的时候,不能超过A,并且小于等于B的容量减去现有的量
代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 21, M = N * N * N;
//M表示队列长度
int A, B, C; //表示三个桶的容量
//定义一下图中的每个点
struct Node
{
int a, b, c;
//每个点是一个三元组
}q[M];
//定义一个bool数组,表示每个点有没有被搜过
bool st[N][N][N];
void bfs()
{
//定义一下队头队尾
int hh = 0, tt = 0;
q[0] = {0, 0, C}; //初始的时候只有C桶有牛奶
//0,0,C这个状态已经有了
st[0][0][C] = true;
//存一下三个桶的容量
int W[3] = {A, B, C};
//做一个宽搜模板
while (hh <= tt)
{
//每次取出队头结点
auto t = q[hh ++];
//枚举从其中一个桶往另外一个桶里倒,可以放到数组里来写
for (int i = 0; i < 3; i ++)
//枚举倒向哪个桶
for (int j = 0; j < 3; j ++)
//判断一下不能往自己桶里倒
if (i != j)
{
//从桶i往桶j中倒
int w[3] = {t.a, t.b, t.c};
//能倒多少
int r = min(w[i], W[j] - w[j]);
w[i] -= r, w[j] += r;
int a = w[0], b = w[1], c = w[2];
//如果发现abc没有被拓展过
if (!st[a][b][c])
{
//扩展一下
st[a][b][c] = true;
//把当前状态加到队列当中
q[++ tt] = {a, b, c};
}
}
}
}
int main()
{
//读入每一个桶的容量
scanf ("%d%d%d", &A, &B, &C);
bfs();
//依次枚举,第一桶是0的话,后面两桶里所有可能的奶量
for (int c = 0; c <= C; c ++)
for (int b = 0; b <= B; b ++)
//如果0bc可以枚举到的话
if (st[0][b][c])
{
printf("%d ", c);
break;
}
return 0;
}